由莲山课件提供http://www.5ykj.com/ 资源全部免费
专题2.3 函数奇偶性
1. (2017·沈阳模拟)函数f(x)满足f(x+1)=-f(x),且当0≤x≤1时,f(x)=2x(1-x),则f的值为
【答案】
【解析】∵f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),即函数f(x)的周期为2.∴f=f=f=2××=.
2. (2016·江苏高考)设f(x)是定义在R上且周期为2的函数,在区间[-1,1)上,f(x)=其中a∈R.若f=f,则f(5a)的值是________.
【答案】-.
3. (2017·广州联考)已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=________.
【答案】-2
【解析】因为f(x+4)=f(x),所以函数f(x)的周期T=4,又f(x)在R上是奇函数,所以f(7)=f(-1)=-f(1)=-2×12=-2.
4. (2017·泰安模拟)奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为________.
【答案】2
【解析】设g(x)=f(x+1),∵f(x+1)为偶函数,则g(-x)=g(x),即f(-x+1)=f(x+1),∵f(x)是奇函数,∴f(-x+1)=f(x+1)=-f(x-1),即f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(5)=0+2=2
5. (2016·天津高考改编)已知f(x
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-),则a的取值范围是________.
【答案】
【解析】因为f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,所以f(-x)=f(x),且f(x)在(0,+∞)上单调递减.由f(2|a-1|)>f(-),f(-)=f(),可得2|a-1|<,即|a-1|<,所以<a<.
6. (2016·山东高考改编)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f=f,则f(6)=________.
【答案】2
【解析】由题意知当x>时,f=f,则f(x+1)=f(x).又当-1≤x≤1时,f(-x)=-f(x),∴f(6)=f(1)=-f(-1).又当x<0时,f(x)=x3-1,∴f(-1)=-2,∴f(6)=2.
7. (2017·揭阳模拟)已知函数f(x)是周期为2的奇函数,当x∈[0,1)时,f(x)=lg(x+1),则f+lg 18=________.
【答案】1
8.设函数f(x)=x3cos x+1.若f(a)=11,则f(-a)=________.
【答案】-9
【解析】观察可知,y=x3cos x为奇函数,且f(a)=a3cos a+1=11,故a3cos a=10.则f(-a)=-a3·cos a+1=-10+1=-9.
9.设f(x)是偶函数,且当x>0时是单调函数,则满足f(2x)=f的所有x之和为________.
【答案】-8
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10. 已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.
【答案】 7
【解析】因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f (x)的图象在区间[0,6]上与x轴的交点个数为7.
11. 已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
[答案] (1,3].
[解析] (1)设x0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,
所以f(-x)=-f(x),于是x