函数的单调性与最值
【考点梳理】
1.增函数、减函数
一般地,设函数f(x)的定义域为I,区间D⊆I,如果对于任意x1,x2∈D,且x1<x2,则都有:
(1)f(x)在区间D上是增函数⇔f(x1)<f(x2);
(2)f(x)在区间D上是减函数⇔f(x1)>f(x2).
2.单调性、单调区间的定义
若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.
3.函数的最值
前提
设函数y=f(x)的定义域为I,如果存在实数M满足
条件
①对于任意的x∈I,都有f(x)≤M;
②存在x0∈I,使得f(x0)=M
①对于任意的x∈I,都有f(x)≥M;
②存在x0∈I,使得f(x0)=M
结论
M是y=f(x)的最大值
M是y=f(x)的最小值
【考点突破】
考点一、函数单调性的判断
【例1】函数y=log(-x2+x+6)的单调增区间为( )
A. B. C.(-2,3) D.
[答案] A
[解析] 由-x2+x+6>0,得-2