由莲山课件提供http://www.5ykj.com/ 资源全部免费
第2章《二次函数》单元测试题
一.选择题(每小题3分,共12小题)
1.下列y关于x的函数中,属于二次函数的是( )
A.y=x﹣1 B.y=
C.y=(x﹣1)2﹣x2 D.y=﹣2x2+1
2.已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是( )
A.当m=0时,y随x的增大而增大
B.当m=时,函数图象的顶点坐标是(,﹣)
C.当m=﹣1时,若x<,则y随x的增大而减小
D.无论m取何值,函数图象都经过同一个点
3.对于抛物线y=﹣2(x+1)2+3,下列结论:
①抛物线的开口向下;
②对称轴为直线x=1:[来源:学科网]
③顶点坐标为(﹣1,3);
④x>1时,y随x的增大而减小.
其中正确结论的个数为( )
A.1 B.2 C.3 D.4
4.比较抛物线y=x2、y=2x2﹣1、y=0.5(x﹣1)2的共同点,其中说法正确的是( ) ]
A.顶点都是原点 B.对称轴都是y轴
C.开口方向都向上 D.开口大小相同
5.将二次函数y=x2的图象向下平移3个单位长度所得的图象解析式为( )
A.y=(x﹣3)2 B.y=(x+3)2 C.y=x2﹣3 D.y=x2+3
6.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是( )
A.a>b>c B.a>c>b C.b>a>c D.c>a>b
7.已知一元二次方程1﹣(x﹣3)(x+2)=0,有两个实数根x1和x2,(x1<x2),则下列判断正确的是( )
A.﹣2<x1<x2<3 B.x1<﹣2<3<x2 C.﹣2<x1<3<x2 D.x1<﹣2<x2<3
8.已知A(﹣1,y1)、B(2,y2)、C(﹣3,y3)在函数y=﹣5(x+1)2+3的图象上,则y1、y2、y3的大小关系是( )
A.y1<y2<y3 B.y1<y3<y2 C.y2<y3<y1 D.y3<y2<y1
9.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是( )
A.2个 B.3个 C.4个 D.5个
10.如图,边长为1的正方形ABCD顶点A(0,1),B(1,1);一抛物线y=ax2+bx+c过点M(﹣1,0)且顶点在正方形ABCD内部(包括在正方形的边上),则a的取值范围是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.﹣2≤a≤﹣1 B.﹣2≤a≤﹣ C.﹣1≤a≤﹣ D.﹣1≤a≤﹣
11.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )
A. B.
C. D.
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是( )
A. B.
C. D.
二.填空题(每小题3分,共6小题)
13.二次函数y=x(x﹣6)的图象与x轴交点的横坐标是 .
14.函数y=﹣3(x+2)2的开口 ,对称轴是 ,顶点坐标为 .
15.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是 .
16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加 m.
17.某企业因生产转型,二月份产值比一月份下降20%,转型成功后生产呈现良好上升势头,三、四月份稳步增长,月平均增长率为x,设该企业一月份产值为a,则该企业四月份的产值y关于x的函数关系式为
18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三.解答题(共7小题)
19.已知:抛物线y=﹣x2﹣6x+21.求:
(1)直接写出抛物线y=﹣x2﹣6x+21的顶点坐标;
(2)当x>2时,求y的取值范围.
20.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.
(1)求a,b的值.
(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.
21.安徽某水产养殖户去年利用“稻虾混养”使每千克小龙虾养殖成本降为6元,在整个销售旺季的80天里,销售单价P(元/千克)与时间第t(天)之间的函数关系为:P=,日销售量y(千克)与时间第t(天)之间的函数关系如图所示.
(1)求日销售y与时间t的函数关系式?
(2)设日销售利润为W(元),求W与t之间的函数表达式;
(3)日销售利润W哪一天最大?最大利润是多少?
22.某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.
(1)直接写出y与x的函数关系式;
(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?
23.已知抛物线y=mx2+(2﹣2m)x+m﹣2(m是常数).
(1)无论m取何值,该抛物线都经过定点 D.直接写出点D的坐标.
(2)当m取不同的值时,该抛物线的顶点均在某个函数的图象上,求出这个函数的表达式.
(3)若在0≤x≤1的范围内,至少存在一个x的值,使y>0,求m的取值范围.
24.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,﹣4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.
(1)求A、B两点坐标;
(2)求抛物线的解析式;
(3)点M是线段AB上的一个动点(不与A、B两点重合),过点M作MN∥BC,交AC于点N,连接CM,在M点运动时,△CMN的面积是否存在最大值?若存在,求出△CMN面积最大时点M的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案与试题解析
一.选择题(共12小题)
1.【解答】解:A、该函数中自变量x的次数是1,属于一次函数,故本选项错误;
B、该函数是反比例函数,故本选项错误;
C、由已知函数关系式得到:y=﹣2x+1,属于一次函数,故本选项错误;
D、该函数符合二次函数定义,故本选项正确.
故选:D.
2.【解答】解:当m=0时,y=x﹣1,则y随x的增大而增大,故选项A正确,
当m=时,y=x2﹣x=(x﹣)2﹣,则函数图象的顶点坐标是(,﹣),故选项B正确,
当m=﹣1时,y=﹣2x2+5x﹣3=﹣2(x﹣)2,则当x<,则y随x的增大而增大,故选项C错误,
∵y=2mx2+(1﹣4m)x+2m﹣1=2mx2+x﹣4mx+2m﹣1=(2mx2﹣4mx+2m)+(x﹣1)=2m(x﹣1)2+(x﹣1)=(x﹣1)[2m(x﹣1)+1],
∴函数y=2mx2+(1﹣4m)x+2m﹣1,无论m取何值,函数图象都经过同一个点(1,0),故选项D正确,
故选:C.
3.【解答】解:①∵a=﹣2<0,
∴抛物线的开口向下,正确;
②对称轴为直线x=﹣1,故本小题错误;
③顶点坐标为(﹣1,3),正确;
④∵x>﹣1时,y随x的增大而减小,
∴x>1时,y随x的增大而减小一定正确;
综上所述,结论正确的个数是①③④共3个.
故选:C.
4.【解答】解:y=x2的顶点坐标为原点,对称轴是y轴,开口向上;
y=2x2﹣1的顶点坐标为(0,﹣1),对称轴是y轴,开口向上;
y=0.5(x﹣1)2的顶点坐标为(1,0),对称轴是x=1,开口向上;
综合判断开口方向都向上,
故选:C.
5.【解答】解:将二次函数y=x2的图象向下平移3个单位,所得图象的解析式为y=x2﹣3,
故选:C.
6.【解答】解:∵二次函数y=x2﹣6x+c,
∴该二次函数的抛物线开口向上,且对称轴为:x=3.
∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,
而三点横坐标离对称轴x=3的距离按由远到近为:
(﹣1,a)、(5,c)、(2,b),
∴a>c>b,
故选:B.
7.【解答】解:令y=(x﹣3)(x+2),
当y=0时,(x﹣3)(x+2)=0,
则x=3或x=﹣2,
所以该抛物线与x轴的交点为(﹣2,0)和(3,0),
∵一元二次方程1﹣(x﹣3)(x+2)=0,
∴(x﹣3)(x+2)=1,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以方程1﹣(x﹣3)(x+2)=0的两根可看做抛物线y=(x﹣3)(x+2)与直线y=1交点的横坐标,
其函数图象如下:
由函数图象可知,x1<﹣2<3<x2,
故选:B.
8.【解答】解:∵抛物线y=﹣5(x+1)2+3的开口向下,对称轴为直线x=﹣1,
而B(2,y2)离直线x=﹣1的距离最远,A(﹣1,y1)点离直线x=﹣1最近,
∴y2<y3<y1.
故选:C.
9.【解答】解:∵由抛物线开口向下,
∴a<0,
∵对称轴在y轴的右侧,
∴b>0,
∴ab<0,所以①正确;
∵点(0,1)和(﹣1,0)都在抛物线y=ax2+bx+c上,
∴c=1,a﹣b+c=0,
∴b=a+c=a+1,
而a<0,
∴0<b<1,所以②错误,④正确;
∵a+b+c=a+a+1+1=2a+2,
而a<0,
∴2a+2<2,即a+b+c<2,
∵抛物线与x轴的一个交点坐标为(﹣1,0),而抛物线的对称轴在y轴右侧,在直线x=1的左侧,
∴抛物线与x轴的另一个交点在(1,0)和(2,0)之间,
∴x=1时,y>0,即a+b+c>0,
∴0<a+b+c<2,所以③正确;
∵x>﹣1时,抛物线有部分在x轴上方,有部分在x轴下方,
∴y>0或y=0或y<0,所以⑤错误.
故选:B.
10.【解答】解:
解:∵顶点是矩形ABCD上(包括边界和内部)的一个动点,
∴当顶点与A点重合,顶点坐标为(0,1),则抛物线解析式y=ax2+1,
∵抛物线过M(﹣1,0),
∴0=a+1,解得a=﹣1,
当顶点与C点重合,顶点坐标为(1,2),则抛物线解析式y=a(x﹣1)2+2,
∵抛物线过M(﹣1,0),
∴0=4a+2,解得a=﹣
∵顶点可以在矩形内部,
∴﹣1≤a≤﹣.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故选:C.
11.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;
B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;
C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;
D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.
故选:B.
12.【解答】解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴在直线x=1的右侧,
∴x=﹣>1,
∴b<0,b<﹣2a,即b+2a<0,
∵抛物线与y轴交点在x轴下方,
∴c<0,
∴abc>0,
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,
∵x=1时,y<0,
∴a+b+c<0.
故选:C.
二.填空题(共6小题)
13.【解答】解:当y=0时,有x(x﹣6)=0,
解得:x1=0,x2=6,
∴二次函数y=x(x﹣6)的图象与x轴交点的横坐标是0或6.
故答案为:0或6.
14.【解答】解:函数y=﹣3(x+2)2的开口向下,对称轴是直线x=﹣2,顶点坐标是(﹣2,0),
故答案为:向下,直线x=﹣2,(﹣2,0).
15.【解答】解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,
当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;
当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);
当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,
综上,m的值是﹣1.5或,
故答案为:﹣1.5或
16.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),
通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),
到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0. 5x2+2,
当水面下降2米,通过抛物线在图上的观察可转化为:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,
可以通过把y=﹣2代入抛物线解析式得出:
﹣2=﹣0.5x2+2,
解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,
故答案为:4﹣4.
17.【解答】解:设该企业一月份产值为a,则该企业四月份的产值y关于x的函数关系式为:
y=a(1﹣20%)(1+x)2.
故答案为:y=a(1﹣20%)(1+x)2.
18.【解答】解:①由图象可知:x=1时,y<0,
∴y=a+b+c<0,故①正确;
②由图象可知:△>0,
∴b2﹣4ac>0,故②正确;
③由图象可知:<0,
∴ab>0,
又∵c=1,
∴abc>0,故③正确;
④由图象可知:(0,0)关于x=﹣1对称点为(﹣2,0)
∴令x=﹣2,y>0,
∴4a﹣2b+c>0,故④错误;
⑤由图象可知:a<0,c=1,
∴c﹣a=1﹣a>1,故⑤正确;
故答案为:①②③⑤
三.解答题(共7小题)
19.【解答】解:(1)∵抛物线y=﹣x2﹣6x+21=﹣(x+3)2+30,
∴该抛物线的顶点坐标是(﹣3,30);
(2))∵抛物线y=﹣x2﹣6x+21=﹣(x+3)2+30,
∴当x>﹣3时,y随x的增大而减小,
∴当x>2时,y的取值范围是y<﹣(2+3)2+30=5,
即当x>2时,y的取值范围是y<5.
20.【解答】解:(1)将x=2代入y=2x,得:y=4,
∴点M(2,4),
由题意,得:,
∴;
(2)如图,过点P作PH⊥x轴于点H,
∵点P的横坐标为m,抛物线的解析式为y=﹣x2+4x,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴PH=﹣m2+4m,
∵B(2,0),
∴OB=2,
∴S=OB•PH
=×2×(﹣m2+4m)
=﹣m2+4m,
∴K==﹣m+4,
由题意得A(4,0),
∵M(2,4),
∴2<m<4,
∵K随着m的增大而减小,
∴0<K<2.
21.【解答】解:(1)设解析式为y=kt+b,
将(1,198)、(80,40)代入,得:,
解得:,
∴y=﹣2t+200(1≤t≤80,t为整数);
(2)设日销售利润为w,则w=(p﹣6)y,
①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450.
②当41≤t≤80时,w=26(﹣2t+200)=﹣52t+5200
(3)①当1≤t≤40时,w=﹣(t﹣30)2+2450.
∴当t=30时,w最大=2450;
②当41≤t≤80时,w=﹣52t+5200
∴当t=41时,w最大=3068,
∵3068>2450,
∴第41天的日销售利润最大,最大利润为3068元.
22.【解答】解:(1)由题意可知y=2x+40;
(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),
=﹣2x2+80x+2400,
=﹣2(x﹣20)2+3200,
∵a=﹣2<0,
∴函数有最大值,
∴当x=20时,w有最大值为3200元,
∴第20天的利润最大,最大利润是3200元.
23.【解答】解:(1)∵抛物线抛物线y=mx2+(2﹣2m)x+m﹣2=m(x﹣1)2+2(x﹣1)
∴当x﹣1=0时,无论m为何值,抛物线经过定点 D,
∴x=1,y=0,
∴定点D(1,0);
(2)∵﹣=﹣=1﹣,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
==﹣,
∴顶点为(1﹣,﹣),
∴顶点在函数y=x﹣1上;
(3)由(1)、(2)可得,该抛物线与x轴的一个交点为(1,0),对称轴为直线x=1﹣.
①
当m>0时,抛物线开口方向向上,且1﹣<1,
由图象可知,要满足条件,只要x=0式,y=m﹣2>0,
∴m>2;
②
当m<0时,抛物线开口方向向下,且1﹣>1,
由图象可知,不符合题意;
综上所述,m的取值范围是:m>2.
24.【解答】解:(1)把x=0代入y=﹣x+3,得:y=3,
∴C(0,3).
把y=0代入y=﹣x+3得:x=3,
∴B(3,0),A(﹣1,0)
将C(0,3)、B(3,0)代入y=﹣x2+bx+c得:,解得b=2,c=3.
∴抛物线的解析式为y=﹣x2+2x+3.
(2)如图所示:作点O关于BC的对称点O′,则O′(3,3).
∵O′与O关于BC对称,
∴PO=PO′.
∴OP+AP=O′P+AP≤AO′.
∴当A、P、O′在一条直线上时,OP+AP有最小值.
设AP的解析式为y=kx+b,则,解得:k=,b=.
∴AP的解析式为y=x+.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
将y=x+与y=﹣x+3联立,解得:y=,x=,
∴点P的坐标为(,).
(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4).
又∵C(0,3,B(3,0),
∴CD=,BC=3,DB=2.
∴CD2+CB2=BD2,
∴∠DCB=90°.
∵A(﹣1,0),C(0,3),
∴OA=1,CO=3.
∴==.
又∵∠AOC=DCB=90°,
∴△AOC∽△DCB.
∴当Q的坐标为(0,0)时,△AQC∽△DCB.
如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.
∵△ACQ为直角三角形,CO⊥AQ,
∴△ACQ∽△AOC.
又∵△AOC∽△DCB,
∴△ACQ∽△DCB.
∴=,即=,解得:AQ=10.
∴Q(9,0).
综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
25.【解答】解:(1)∵x2﹣4x﹣12=0,
∴x1=﹣2,x2=6.
即:A(﹣2,0),B(6,0).
(2)∵抛物线过点A、B、C,
∴设抛物线的解析式为y=a(x+2)(x﹣6),将点C的坐标代入,得:
﹣4=a(0+2)(0﹣6),
解得a=.
∴抛物线的解析式为y=x2﹣x﹣4.
(3)存在.
设点M的坐标为(m,0),过点N作NH⊥x轴于点H
∵点A的坐标为(﹣2,0),点B的坐标为(6,0),
∴AB=8,AM=m+2.
∵MN∥BC,∴△AMN∽△ABC.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴=,∴=,
∴NH=
∴S△CMN
=S△ACM﹣S△AMN
=•AM•CO﹣•AM•NH
=(m+2)(4﹣)
=﹣m2+m+3
=﹣(m﹣2)2+4.
∴当m=2时,S△CMN有最大值4.
此时,点M的坐标为(2,0).
由莲山课件提供http://www.5ykj.com/ 资源全部免费