由莲山课件提供http://www.5ykj.com/ 资源全部免费
专题十 解直角三角形或相似的计算与实践
年份
题型
考点
题号
分值
难易度
2017
选择题、解答题
方位角、三角函数
10、25(2)(3)
3+7=10
容易题、中等题、较难题
2016
选择题
相似三角形判定
15
2
中等题
2015
选择题
方位角
9
3
容易题
命题规律
纵观河北历年中考,每年都有命题,而且多与其他知识综合考查,近几年考查稍微弱一些,但感觉以后考查会侧重的,并且此专题难题较多,出题角度很广,2017年已经体现了,复习时要重视.预测2018年会延续2017年,分值和题量不变.
首先夯实基础,其次加强与其他知识的综合应用,今年中考单独考查相似或三角函数的时候很少,多数把它俩作为解题工具,因此要加强综合训练.
,重难点突破)
锐角三角函数的实际应用
【例1】(贵阳中考)在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基AB的高为4 m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5 m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)
(1)求A,C的距离;(结果保留根号)
(2)求塔高AE.(结果保留整数)
【解析】(1)在Rt△ABC中,利用锐角三角函数关系可得AC=,结合已知求出AC的距离;(2)在Rt△ADE中,易得AE=AD·tan∠ADE,结合已知求解,根据题目要求取近似值.
【答案】解:(1)在Rt△ABC中,∠ACB=30°,AB=4 m.
∵tan∠ACB=,
∴AC===4(m).
答:A,C的距离为4 m.
(2)在Rt△ADE中,∠ADE=50°,
AD=(5+4)m.
∵tan∠ADE=,
∴AE=AD·tan∠ADE=(5+4)×tan50°≈14(m).
答:塔高AE约为14 m.
1.(张家界中考)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20 m到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12 m,求旗杆AB的高度.(结果精确到0.1 m,参考数据:≈1.73,≈1.41)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:由题意得∠DBE=∠BEC-∠BDE=60°-30°=30°=∠BDE,
∴BE=DE=20.
在Rt△BEC中,
BC=BE·sin60°=20×=10(m),∴AB=BC-AC=10-12≈5.3(m).
答:旗杆AB的高度是5.3 m.
【方法指导】
解决直角三角形的实际应用问题,最重要的是建立数学模型,将其转化为数学问题,其次是牢记特殊角的三角函数值及边角关系.
相似的综合
【例2】(2017株洲中考)如图所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.
(1)求证:△DAE≌△DCF;
(2)求证:△ABG∽△CFG.
【解析】(1)由正方形ABCD与等腰直角三角形DEF,得到两对边相等,一对直角相等,利用SAS即可得证;(2)由第(1)问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角对应角相等的三角形相似即可得证.
【答案】证明:(1)∵正方形ABCD,等腰直角三角形EDF,
∴∠ADC=∠EDF=90°,
AD=CD,DE=DF,
∴∠ADE+∠ADF=∠ADF+∠CDF,
∴∠ADE=∠CDF,
在△ADE和△CDF中,,
∴△ADE≌△CDF;
(2)延长BA,交ED于点M.
∵△ADE≌△CDF,∴∠EAD=∠FCD,
即∠EAM+∠MAD=∠BCD+∠BCF.
∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF.
∵∠EAM=∠BAG,∴∠BAG=∠BCF.
∵∠AGB=∠CGF,∴△ABG∽△CFG.
2.(2017常德中考)如图,Rt△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,交AC于F.
(1)如图①,若BD=BA,求证:△ABE≌△DBE;
(2)如图②,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF·AC.
解:(1)在Rt△ABE和Rt△DBE中,
∵∴△ABE≌△DBE(HL);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)①过G作GH∥AD交BC于H.
∵G是AB中点且GH∥AD,∴H是BD中点,∴BH=DH.
∵BD=4DC,设DC=1,BD=4,∴BH=DH=2;
∵GH∥AD,∴==,∴GM=2MC;
②过C作CN⊥AC交AD的延长线于N,则CN∥AG.
∴△AGM∽△NCM,∴=.
由①知GM=2MC,∴2NC=AG.
∵∠BAC=∠AEB=90°,
∴∠ABF=∠CAN=90°-∠BAE,
∴△ACN∽△BAF,∴=.
∵AB=2AG,∴=,
∴2CN·AG=AF·AC,∴AG2=AF·AC.
【方法指导】
首先掌握相似的性质和判定,再结合图形选择正确的判断方法,辅助线的添加是解题关键,添辅助线有一个重要原则是“构造相似三角形”.
教后反思
__________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
由莲山课件提供http://www.5ykj.com/ 资源全部免费