2018中考数学第16讲函数的应用课后练习(浙江有答案)
加入VIP免费下载

本文件来自资料包: 《2018中考数学第16讲函数的应用课后练习(浙江有答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 课后练习16 函数的应用 A组 1. ‎(2017·黑龙江)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是(  )‎ 第1题图 2. ‎(2017·温州模拟)为了建设生态环境,某工厂在一段时间内限产并投入资金进行治污改造,下列描述的是月利润y(万元)关于月份x之间的变化关系,治污改造完成前是反比例函数图象的一部分,治污改造完成后是一次函数图象的一部分,则下列说法不正确的是(  )‎ 第2题图 A.5月份该厂的月利润最低 B.治污改造完成后,每月利润比前一个月增加30万元 C.治污改造前后,共有6个月的月利润不超过120万元 D.治污改造完成后的第8个月,该厂月利润达到300万元 3. 某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为(  )‎ A.50m  B.100m  C.160m  D.200m 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 第3题图                                                    ‎ ‎4.(2016·台州)竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=        .‎ ‎5.如图所示是某一蓄水池的排水速度v(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.‎ 第5题图 ‎(1)请你根据图象提供的信息求出此蓄水池的蓄水量;‎ ‎(2)写出此函数的解析式;‎ ‎(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?‎ ‎(4)如果每小时排水量是5m3,那么水池中的水要用多少小时排完?‎ ‎        ‎ ‎6.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120具有一次函数的关系,如下表所示.‎ x ‎50‎ ‎60‎ ‎90‎ ‎120‎ y ‎40‎ ‎38‎ ‎32‎ ‎26‎ ‎(1)求y关于x的函数解析式;‎ ‎(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.‎ ‎        ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎7.某校为实施国家“营养早餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:‎ 原料维生素C含量及价格 甲种原料 乙种原料 维生素C(单位/千克)‎ ‎600‎ ‎400‎ 原料价格(元/千克)‎ ‎9‎ ‎5‎ 现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C.设购买甲种原料x千克.‎ ‎(1)至少需要购买甲种原料多少千克?‎ ‎(2)设食堂用于购买这两种原料的总费用为y元,求y与x的函数关系式.并说明购买甲种原料多少千克时,总费用最少?‎ ‎        ‎ ‎8.如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?‎ 第8题图 ‎        ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎9.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.‎ 第9题图 ‎(1)求小明骑车的速度和在甲地游玩的时间;‎ ‎(2)小明从家出发多少小时后被妈妈追上?此时离家多远?‎ ‎(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.‎ ‎ ‎ B组 ‎10.(2016·临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.‎ ‎(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;‎ ‎(2)小明选择哪家快递公司更省钱?‎ ‎      ‎ ‎11.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分,如图.‎ ‎(1)求演员弹跳离地面的最大高度;‎ ‎(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.‎ ‎ ‎ ‎ 第11题图 ‎       ‎ C组 ‎12.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:‎ 第12题图 销售单价 x(元/件)‎ ‎…‎ ‎20‎ ‎30‎ ‎40‎ ‎50‎ ‎60‎ ‎…‎ 每天销售 量y(件)‎ ‎…‎ ‎500‎ ‎400‎ ‎300‎ ‎200‎ ‎100‎ ‎…‎ ‎(1)把上表中x、y的各组对应值作为点的坐标,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 在右面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;‎ ‎(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)‎ ‎(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?‎ 参考答案 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 课后练习16 函数的应用 A组 ‎1.C 2.C 3.C 4.1.6‎ ‎5.(1)48m3 (2)v=(t>0) (3)8m3 (4)9.6h ‎6.(1)y=-x+50(30≤x≤120); (2)设原计划要m天完成,则增加2km后用了(m+15)天,根据每天修建的工作量不变建立方程求出其解,就可以求出计划的时间,然后代入(1)的解析式就可以求出原计划每天的修建费.由题意,得=,解得:m=45.∴原计划每天的修建费为:-×45+50=41(万元).‎ ‎7.(1)600x+400(20-x)≥480×20,解得x≥8.∴至少需要购买甲种原料8千克. (2)y=9x+5(20-x),即y=4x+100,∵k=4>0,∴y随x的增大而增大.∵x≥8,∴当x=8时,y最小.∴购买甲种原料8千克时,总费用最少.‎ ‎8.∵矩形MFGN∽矩形ABCD,∴=.∵AB=2AD,MN=x,∴MF=2x.∴EM=EF-MF=10-2x.∴S=x(10-2x)=-2x2+10x=-2(x-)2+.∴当x=时,S有最大值为.‎ 第9题图 ‎9.(1)由图象,得:小明骑车速度:10÷0.5=20(km/h).在甲地游玩的时间是1-0.5=0.5(h). (2)妈妈驾车速度:20×3=60(km/h),如图,设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=-10.∴直线BC解析式为y=20x-10①.设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=-80.∴直线DE解析式为y=60x-80②.联立①②,得x=1.75,y=25.∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km. (3)设从妈妈追上小明的地点到乙地的路程为n(km).由题意得-=,∴n=5.∴从家到乙地的路程为5+25=30(km).‎ B组 ‎10.(1)由题意知:当01时,y甲=22+15(x-1)=15x+7,y乙=16x+3(x>0). (2)①当0

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料