由莲山课件提供http://www.5ykj.com/ 资源全部免费
课后练习29 锐角三角函数与解直角三角形
A组
1.(2017·金华)在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是( )
A. B. C. D.
2.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )
A.点B到AO的距离为sin54°
B.点B到AO的距离为tan36°
C.点A到OC的距离为sin36°sin54°
D.点A到OC的距离为cos36°sin54°
第2题图
3.如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是( )
A.25m B.25m C.25m D.m
第3题图 第4题图
4.(2015·聊城)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为( )
A.34米 B.38米 C.45米 D.50米
5.如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是( )
A.absinα
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B.absinα
C.abcosα
D.abcosα
第5题图
6.(2017·宁波)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了____________________米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)
第6题图
7.计算:(1)tan45°+cos45°;
(2)sin30°+cos30°·tan60°.
8.(2016·邵阳)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
第8题图
B组
9.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离.
(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.7321)
第9题图
10.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)
第10题图
11.(2015·昆明)如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m,AB和CD之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
第11题图
12.如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶,AB=10米,AE=15米.(i=1∶是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
第12题图
13.九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.
(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数;
(2)如图2,第二小组用皮尺量得EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度;
(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).
备用数据:tan60°≈1.732,tan30°≈0.577,≈1.732,≈1.414.
第13题图
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C组
14.(2017·舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1cm)
第14题图
参考答案
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
课后练习29 锐角三角函数与解直角三角形
A组
1.A 2.C 3.A 4.C 5.A 6.280
7.(1)2; (2)2.
8.在直角三角形ACO中,sin75°==≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°===,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.
B组
9. (1)AD==75cm,∴车架档AD的长为75cm; (2)过点E作EF⊥AB,垂足为点F,距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63cm,∴车座点E到车架档AB的距离约是63cm.
第9题图
10.首先过点B作BD⊥AC于D,由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,则可求得∠ACB的度数,然后利用三角函数的知识求解即可求得20海里.
11.由题意得:∠AEB=42°,∠DEC=45°,∵AB⊥BD,CD⊥BD,∴在Rt△ABE中,∠ABE=90°,AB=15,∠AEB=42°,∵tan∠AEB=,∴BE=≈15÷0.90=,在Rt△DEC中,∠CDE=90°,∠DEC=∠DCE=45°,CD=20,∴ED=CD=20,∴BD=BE+ED=+20≈36.7(m).答:两幢建筑物之间的距离BD约为36.7m.
12.(1)过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5.0米; (2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE-DE=5+15+5-15=20-10≈2.7m.答:广告牌CD高约2.7米.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
第12题图
13.(1)∵BD=BC,∴∠CDB=∠DCB,∴∠α=2∠CDB=2×38°=76°. (2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,∵MN∥EH,MN=1.9,∴EH=2MN=3.8(米),∴E点离地面FB的高度是3.8米. (3)延长AE交PB于点C,设AE=x,则AC=x+3.8,∵∠APB=45°,∴PC=AC=x+3.8,∵PQ=4,∴CQ=x+3.8-4=x-0.2,∵tan∠AQC==tan60°=,∴=,x=≈5.7,∴AE≈5.7(米).答:旗杆AE的高度约是5.7米.
第13题图
C组
14.(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100·sin80°≈98,∵∠EFG=125°,∴∠EFM=180°-125°-10°=45°,∴FM=66·cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm. (2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66·sin45°≈46.53,∴PH≈46.53,∵GN=100·cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH-PH=56-46.53=9.47≈9.5,∴他应向前9.5cm.
第14题图
由莲山课件提供http://www.5ykj.com/ 资源全部免费