由莲山课件提供http://www.5ykj.com/ 资源全部免费
跟踪强化训练(二十八)
一、选择题
1.(2017·河北“五个一名校联盟”二模)某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )
A. B.
C. D.
[解析] 设“开关第一次闭合后出现红灯”为事件A,“第二次闭合出现红灯”为事件B,则由题意可得P(A)=,P(AB)=,则在第一次闭合后出现红灯的条件下第二次出现红灯的概率是:P(B|A)===.故选C.
[答案] C
2.(2017·邯郸一模)口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回地连续抽取2次,每次从中任意地取出1个球,则2次取出的球的颜色不相同的概率是( )
A. B.
C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
[解析] 解法一:由题意知,基本事件总数n=3×3=9,记事件M为“2次取出的球的颜色不相同”,则事件M所包含的基本事件个数m=3×2=6,所以2次取出的球的颜色不相同的概率P(M)===,故选C.
解法二:由题意知,所有的基本事件为:红红、红白、红黑、白红、白白、白黑、黑红、黑白、黑黑,共9个,其中2次取出的球的颜色相同的基本事件有3个,所以2次取出的球的颜色不相同的概率为1-=.
[答案] C
3.(2017·四川省成都市高三二诊)两位同学约定下午5:30~6:00在图书馆见面,且他们在5:30~6:00到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开.则这两位同学能够见面的概率是( )
A. B.
C. D.
[解析] 如图所示,以5:30作为原点O
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,建立平面直角坐标系,设两位同学到达的时刻分别为x,y,设事件A表示两位同学能够见面,所构成的区域为A={(x,y)||x-y|≤15},即图中阴影部分,根据几何概型概率计算公式得P(A)==.
[答案] D
4.(2017·金华十校模拟)下课后教室里最后还剩下2位男同学和2位女同学,如果没有2位同学一块走,则第二次走的是男同学的概率是( )
A. B.
C. D.
[解析] =,故选A.
[答案] A
5.(2017·南宁模拟)从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于12的概率为( )
A. B. C. D.
[解析] 从5个数字中任意抽取3个数字组成一个三位数,并且允许有重复的数字,这样构成的数字有53=125个,但要使各位数字之和等于12且没有重复数字时,则该数只能含有3,4,5三个数字,它们有A=6种;若三位数的各位数字均重复,则该数为444;若三位数中有2个数字重复,则该数为552,525,255,有3种.因此,所求概率为P==,故选A.
[答案] A
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
6.(2017·山东青岛模拟)为了庆祝2016年元旦,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该食品5袋,能获奖的概率为( )
A. B.
C. D.
[解析] 获奖可能情况分两类:①12311;12322;12333;
②12312;12313;12323.
①P1=,②P2=,
∴P=P1+P2==,故选D.
[答案] D
二、填空题
7.(2017·湖北武汉模拟)已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
据此估计,该射击运动员射击4次至少击中3次的概率为________.
[解析] 由题意知模拟射击4次的结果,经随机模拟产生了20组随机数,在20组随机数中表示射击4次至少击中3次的有:
5727 0293 9857 0347 4373 8636
9647 4698 6233 2616 8045 3661
9597 7424 4281,共15组随机数,
∴所求概率P==0.75.
[答案] 0.75
8.(2017·青岛模拟)如图所示的阴影部分是由x轴,直线x=1及曲线y=ex-1围成的,现向矩形区域OABC内随机投掷一点,则该点落在阴影部分的概率是__________.
[解析] 由几何概型的概率计算公式可知,所求概率为=.
[答案]
9.(2017·皖南八校联考)某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差D(ξ)=________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
[解析] 从4名男生、2名女生中选出3人参加志愿者服务,选出的男生人数ξ可能为1,2,3,其中,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.所以ξ的数学期望E(ξ)=1×+2×+3×=2,D(ξ)=(1-2)2×+(2-2)2×+(3-2)2×=.
[答案]
三、解答题
10.(2017·山东临沂一模)为弘扬传统文化,某校举行诗词大赛.经过层层选拔,最终甲乙两人进入总决赛,争夺冠军.决赛规则如下:①比赛共设有五道题;②双方轮流答题,每次回答一道,两人答题的先后顺序通过抽签决定;③若答对,自己得1分;若答错,则对方得1分;④先得3分者获胜.已知甲、乙答对每道题的概率分别为和,且每次答题的结果相互独立.
(1)若乙先答题,求甲3∶0获胜的概率;
(2)若甲先答题,记乙所得分数为X,求X的分布列和数学期望E(X).
[解] (1)分别记“甲、乙回答正确”为事件A、B,“甲3∶0获胜”为事件C,则P(A)=,P(B)=.由事件的独立性和互斥性得:
P(C)=P(A)=P()P(A)P(),
=××=.
(2)X的所有可能取值为0,1,2,3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
P(X=0)=2×=,
P(X=1)=2××+C×××2=,
P(X=2)=2×2+C××C××2×+2×2×=,
P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=.
X的分布列为:
X
0
1
2
3
P
E(X)=0×+1×+2×+3×=.
11.(2017·广州综合测试)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.
[解] (1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)==.
所以选出的3名同学是来自互不相同学院的概率为.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)随机变量X的所有可能值为0,1,2,3.
P(X=k)=(k=0,1,2,3).
所以P(X=0)==,P(X=1)==,
P(X=2)==,P(X=3)==.
所以随机变量X的分布列是
X
0
1
2
3
P
随机变量X的数学期望E(X)=0×+1×+2×+3×=.
12.(2017·石家庄质检)交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表
浮动因素
浮动比率
A1
上一个年度未发生有责任道路交通事故
下浮10%
A2
上两个年度未发生有责任道路交通事故
下浮20%
A3
上三个及以上年度未发生有责任道路交通事故
下浮30%
A4
上一个年度发生一次有责任不涉及死亡的道路交通事故
0%
A5
上一个年度发生两次及两次以上有责任道路交通事故
上浮10%
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A6
上一个年度发生有责任道路交通死亡事故
上浮30%
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型
A1
A2
A3
A4
A5
A6
数量
10
5
5
20
15
5
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
[解] (1)由题意可知,X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a.
由统计数据可知:
P(X=0.9a)=,P(X=0.8a)=,P(X=0.7a)=,P(X=a)=,P(X=1.1a)=,P(X=1.3a)=.
所以X的分布列为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
X
0.9a
0.8a
0.7a
a
1.1a
1.3a
P
所以E(X)=0.9a×+0.8a×+0.7a×+a×+1.1a×+1.3a×==≈942.
(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为,三辆车中至多有一辆事故车的概率为P=3+C2=.
②设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为-5000,10000.
所以Y的分布列为
Y
-5000
10000
P
所以E(Y)=-5000×+10000×=5000,
所以该销售商一次购进100辆(车龄已满三年)该品牌的二手车获得利润的期望值为100×E(Y)=500000元.
由莲山课件提供http://www.5ykj.com/ 资源全部免费