2018北京市各区中考数学一模试题精选汇编:压轴题(带答案)
加入VIP免费下载

本文件来自资料包: 《2018北京市各区中考数学一模试题精选汇编:压轴题(带答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 北京市各区2018届九年级中考一模数学试卷精选汇编 ‎ 压轴题专题 东城区 ‎28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点 P是线段MN关于点O ‎ 的关联点.图1是点P为线段MN关于点O的关联点的示意图.‎ 在平面直角坐标系xOy中,⊙O的半径为1.‎ ‎(1)如图2, ,.在A(1,0),B(1,1),‎ ‎ 三点中, 是线段MN关于点O的关联点的是 ;‎ ‎(2)如图3, M(0,1),N,点D是线段 MN关于点O的关联点.‎ ①∠MDN的大小为 °;‎ ②在第一象限内有一点E,点E是线段MN关于点O的关联点,‎ 判断△MNE的形状,并直接写出点E的坐标; ‎ ③点F在直线上,当∠MFN≥∠MDN时,求点F的横坐标的取值范围.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎28. 解:(1)C; --------------2分 ‎(2)① 60°;‎ ② △MNE是等边三角形,点E的坐标为;--------------5分 ③ 直线交 y轴于点K(0,2),交x轴于点.‎ ‎∴,.‎ ‎∴.‎ 作OG⊥KT于点G,连接MG.‎ ‎∵,‎ ‎∴OM=1.‎ ‎∴M为OK中点 .‎ ‎∴ MG =MK=OM=1.‎ ‎∴∠MGO =∠MOG=30°,OG=.‎ ‎∴‎ ‎∵,‎ ‎∴ .‎ 又,,‎ ‎∴.‎ ‎∴.‎ ‎∴G是线段MN关于点O的关联点.‎ 经验证,点在直线上.‎ 结合图象可知, 当点F在线段GE上时 ,符合题意.‎ ‎∵,‎ ‎ ∴ .--------------8分 西城区 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎28.对于平面内的⊙和⊙外一点,给出如下定义:若过点的直线与⊙存在公共点,记为点,,设,则称点(或点)是⊙的“相关依附点”,特别地,当点和点重合时,规定,(或).‎ 已知在平面直角坐标系中,,,⊙的半径为.‎ ‎(1)如图,当时,‎ ‎①若是⊙的“相关依附点”,则的值为__________.‎ ‎②是否为⊙的“相关依附点”.答:__________(填“是”或“否”).‎ ‎(2)若⊙上存在“相关依附点”点,‎ ‎①当,直线与⊙相切时,求的值.‎ ‎②当时,求的取值范围.‎ ‎(3)若存在的值使得直线与⊙有公共点,且公共点时⊙的“相关依附点”,直接写出的取值范围.‎ ‎【解析】(1)①.②是.‎ ‎(2)①如图,当时,不妨设直线与⊙相切的切点在轴上方(切点在轴下方时同理),‎ 连接,则,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵,,,‎ ‎∴,,‎ ‎∴,‎ 此时,‎ ‎②如图,若直线与⊙不相切,设直线与⊙的另一个交点为(不妨设,点,在轴下方时同理),‎ 作于点,则,‎ ‎∴,‎ ‎∵,‎ ‎∴,‎ ‎∴当时,,‎ 此时,‎ 假设⊙经过点,此时,‎ ‎∵点早⊙外,‎ ‎∴的取值范围是.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3).‎ 海淀区 ‎28.在平面直角坐标系中,对于点和,给出如下定义:若上存在一点不与重合,使点关于直线的对称点在上,则称为的反射点.下图为的反射点的示意图.‎ ‎ ‎ ‎(1)已知点的坐标为,的半径为,‎ ‎①在点,,中,的反射点是____________;‎ ‎②点在直线上,若为的反射点,求点的横坐标的取值范围;‎ ‎(2)的圆心在轴上,半径为,轴上存在点是的反射点,直接写出圆心的横坐标的取值范围.‎ ‎28.解(1)①的反射点是,. ………………1分 ‎②设直线与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为,,,,过点作轴于点,如图.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ 可求得点的横坐标为.‎ 同理可求得点,,的横坐标分别为,,.‎ 点是的反射点,则上存在一点,使点关于直线的对称点在上,则.‎ ‎∵,∴.‎ 反之,若,上存在点,使得,故线段的垂直平分线经过原点,且与相交.因此点是的反射点.‎ ‎∴点的横坐标的取值范围是,或.………………4分 ‎(2)圆心的横坐标的取值范围是. ………………7分 丰台区 ‎28.对于平面直角坐标系xOy中的点M和图形,给出如下定义:点P为图形上一点,点Q为图形上一点,当点M是线段PQ的中点时,称点M是图形,的“中立点”.如果点P(x1,y1),Q(x2,y2),那么“中立点”M的坐标为.‎ 已知,点A(-3,0),B(0,4),C(4,0).‎ ‎(1)连接BC,在点D(,0),E(0,1),F(0,)中,可以成为点A和线段BC的“中立点”的是____________;‎ ‎(2)已知点G(3,0),⊙G的半径为2.如果直线y = - x + 1上存在点K可以成为点A和⊙G的“中立点”,求点K的坐标;‎ ‎(3)以点C为圆心,半径为2作圆.点N为直线y = 2x + 4上的一点,如果存在点N 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎,使得轴上的一点可以成为点N与⊙C的“中立点”,直接写出点N的横坐标的取值范围.‎ ‎ ‎ ‎28.解:(1)点和线段的“中立点”的是点D,点F; ………2分 ‎(2)点A和⊙G的“中立点”在以点O为圆心、‎ 半径为1的圆上运动.‎ 因为点K在直线y=- x+1上,‎ 设点K的坐标为(x,- x+1),‎ 则x2+(- x+1)2=12,解得x1=0,x2=1. ‎ 所以点K的坐标为(0,1)或(1,0). ………5分 ‎(3)(说明:点与⊙C的“中立点”在以线段NC的中点P为圆心、‎ 半径为1的圆上运动.圆P与y轴相切时,符合题意.)‎ x y x y 所以点N的横坐标的取值范围为-6≤xN≤-2. ………8分 石景山区 ‎28.对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎(1)已知点A的坐标为,点的坐标为,‎ ‎ 则点A,B的“确定圆”的面积为_________;‎ ‎(2)已知点A的坐标为,若直线上只存在一个点B,使得点A,B的“确定圆”的面积为,求点B的坐标;‎ ‎(3)已知点A在以为圆心,以1为半径的圆上,点B在直线上, 若要使所有点A,B的“确定圆”的面积都不小于,直接写出的取值范围.‎ ‎28.解:(1); ………………… 2分 ‎ (2)∵直线上只存在一个点,使得点的“确定圆”的面积 ‎ 为, ‎ ‎ ∴⊙的半径且直线与⊙相切于点,如图,‎ ‎ ∴,.‎ ‎ ‎ ‎ ‎ ‎①当时,则点在第二象限.‎ ‎ 过点作轴于点,‎ ‎ ∵在中,,,‎ ‎ ∴.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ∴.‎ ‎ ②当时,则点在第四象限.‎ ‎ 同理可得.‎ ‎ 综上所述,点的坐标为或.‎ ‎ ………………… 6分 ‎ ‎ ‎(3)或. ………………… 8分 朝阳区 ‎28. 对于平面直角坐标系中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为 线段AB的伴随点.‎ ‎(1)当t=3时,‎ ‎①在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是 ;‎ ‎②在直线y=2x+b上存在线段AB的伴随点M、N, 且MN,求b的取值范围;‎ ‎(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针 旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围.‎ ‎28. 解:(1)①线段AB的伴随点是: . …………………2分 ‎ ②如图1,当直线y=2x+b经过点(3,1)时,b=5,此时b取得最大值. ‎ ‎…………………………………………4分 ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 如图2,当直线y=2x+b经过点(1,1)时,b=3,此时b取得最小值. ‎ ‎……………………………………………5分 ‎∴ b的取值范围是3≤b≤5. ……………………………………6分 图2‎ 图1‎ ‎(2)t的取值范围是…………………………………………8分 燕山区 ‎28.在Rt△ABC中, ∠ACB=90°,CD是AB边的中线,DE⊥BC于E, 连结CD,点P在射线CB上(与B,C不重合).‎ ‎(1)如果∠A=30°‎ ‎①如图1,∠DCB= °‎ ‎②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;‎ ‎( 2 )如图3,若点P在线段CB 的延长线上,且∠A= (0°

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料