由莲山课件提供http://www.5ykj.com/ 资源全部免费
天津市河东区普通中学2018届初三数学中考复习 数据的分析与决策
专题复习训练题
1.下列说法正确的是( B )
A.了解飞行员视力的达标率应使用抽样调查
B.一组数据3,6,6,7,9的中位数是6
C.从2000名学生中选200名学生进行抽样调查,样本容量为2000
D.一组数据1,2,3,4,5的方差是10
2.某校共有40名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这40名学生年龄的中位数是( C )
A.12岁 B.13岁 C.14岁 D.15岁
3.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是( B )
A.95 B.90 C.85 D.80
4.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( C )
A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,20
5.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是( A )
A.4,5 B.4,4 C.5,4 D.5,5
6.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( D )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.5,5, B.5,5,10 C.6,5.5, D.5,5,
7.下表是某校合唱团成员的年龄分布
年龄/岁
13
14
15
16
频数
5
15
x
10-x
对于不同的x,下列关于年龄的统计量不会发生改变的是( B )
A.平均数、中位数 B.众数、中位数
C.平均数、方差 D.中位数、方差
8. 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( A )
A.a<13,b=13 B.a<13,b<13
C.a>13,b<13 D.a>13,b=13
9.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是__8__.
10.两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为__7__.
11.若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为__17或18__.
12.在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140,146, 143, 175, 125, 164, 134, 155, 152, 168, 162, 148.
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?
解:(1)中位数为150,平均数为151
(2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好
13.甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):
数与代数
空间与图形
统计与概率
综合与实践
学生甲
90
93
89
90
学生乙
94
92
94
86
(1)分别计算甲、乙成绩的中位数;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3∶3∶2∶2计算,那么甲、乙的数学综合素质成绩分别为多少分?
解:(1)甲成绩的中位数是90,乙成绩的中位数是93
(2)甲:90×+93×+89×+90×=90.7(分),
乙:94×+92×+94×+86×=91.8(分),
则甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分
14.甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.
根据图中信息,回答下列问题:
(1)甲的平均数是__8__,乙的中位数是__7.5__;
(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?
解:(2)x乙=8;s甲2=1.6,s乙2=1.2,
∵s乙2<s甲2,
∴乙运动员的射击成绩更稳定
15.八(1)班同学分成甲、乙两组,开展“社会主义核心价值观”知识竞赛,满分5分,得分均为整数,小马虎根据竞赛成绩,绘制了分组成绩条形统计图和全班成绩扇形统计图,经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.
(1)甲组同学成绩的平均数是__3.55分__,中位数是__3.5分__,众数是__3分__;
(2)指出条形统计图中存在的错误,并求出正确值.
解:(2)乙组得5分的人数统计有误,
理由:由条形统计图和扇形统计图的对应可得
2÷5%=40,(3+2)÷12.5%=40,
(7+5)÷30%=40,(6+8)÷35%=40,
(4+4)÷17.5%≠40,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故乙组得5分的人数统计有误,
正确人数应为40×17.5%-4=3
16.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)图①中a的值为__25__;
(2)求统计的这组初赛成绩数据的平均数、众数和中位数;
(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.
解:(2)x=1.61;众数是1.65;中位数是1.60
(3)能;
∵共有20个人,中位数是第10,11个数的平均数.
∴根据中位数可以判断出能否进入前9名;
∵1.65 m>1.60 m,
∴能进入复赛
由莲山课件提供http://www.5ykj.com/ 资源全部免费