市质检数学(文科)试题 第 1 页(共 13 页)
保密★启用前
泉州市 2019 届普通高中毕业班第一次质量检查
文 科 数 学
2019.2
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考
生都必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
17.(12 分)
ABC△ 的内角 ,,A B C 的对边分别为 ,,abc.已知 5b , sin 2 sina b A b A C .
(1)证明: 为等腰三角形;
(2)点 D 在边 AB 上, 2AD BD , 17CD ,求 AB .
【命题意图】本小题主要考查正弦定理,余弦定理等解三角形的基础知识,考查推理论证能力与运算求解
能力等,考查数形结合思想、化归与转化思想、函数与方程思想等,体现基础性、综合性与
应用性,导向对发展直观想象、逻辑推理、数学运算及数学建模等核心素养的关注.
【试题简析】
解法一:(1) 中, sin 2 sin 2 sina b A b A C b B , ··········································· 1 分
由正弦定理
sin sin
ab
AB ,················································································ 4 分
得: 22a a b b ,
整理得: 20a b a b , ··········································································· 5 分
因为 20ab,所以 ab ,
所以 为等腰三角形. ··············································································· 6 分
(2)设 BD x ,则 2AD x ,
由余弦定理,得:
24 17 25cos
2 2 17
xCDA
x
,
2 17 25cos
2 17
xCDB
x
, ······································ 9 分
因为 πCDA CDB ,所以
224 17 25 17 25
2 2 17 2 17
xx
xx
, ···························· 10 分
解得: 2x ,所以 6AB . ·············································································· 12 分 市质检数学(文科)试题 第 2 页(共 13 页)
C
BDA
解法二:(1) ABC△ 中, sin 2 sin 2 sina b A b A C b B , ··········································· 1 分
由正弦定理,得: 2(sin sin )sin 2sinA B A B, ··············································· 4 分
化简得: (sin 2sin ) sin sin 0A B A B ,
又因为 , 0,πAB ,所以sin 2sin 0AB,
所以sin sinAB , ·························································································· 5 分
所以 AB ,或 πAB(舍去),
所以 为等腰三角形. ················································································ 6 分
(2)取 AB 中点 E ,连接CE ,由(1)得, 为等腰三角形,所以CE AB , ·········· 8 分
设 BD x ,
则 2AD x, 3
2BE x , 1
2DE x , ································································· 9 分
由勾股定理得:
221317 2522xx
, ························································ 11 分
解得: 2x ,所以 6AB . ·············································································· 12 分
E
C
BDA
解法三:(1)同解法一;
(2)因为 2AD BD ,所以 12
33CD CA CB, ························································· 7 分
所以 2 2 21 4 4
9 9 9CD CA CA CB CB ,所以 25 4 45 5 cos 25 179 9 9BCA , 8 分
所以 7cos 25BCA, ····················································································· 9 分
由余弦定理,得: 2 725 25 2 5 5 3625AB , ·········································· 11 分 市质检数学(文科)试题 第 3 页(共 13 页)
所以 6AB . ·································································································· 12 分
解法四:(1)同解法一;
(2)作 //DF AC 交 BC 于 F , 2AD BD ,
则 15
33DF AC, 2 10
33CF AB , ······························································ 7 分
由余弦定理,得:
2 2 2
cos 2
CD CF DFDCF CD CF
, ············································· 9 分
所以
100 2517 19 1799cos 10 852 17 3
DCF
. ························································· 10 分
由余弦定理,得: 2 19 1725 17 2 17 5 485BD , ·································· 11 分
所以 2BD ,所以 . ·············································································· 12 分
F
C
BDA
18.(12 分)
如图,在四棱锥 ABCDP 中,底面 ABCD是边长为 2 的正方形, 2 PDPA , 6PB PC.
(1)证明:平面 PAD 平面 ABCD;
(2)若点 E 为线段 PA 的中点,求 到平面 PBC 的距离.
E
P
CD
A B
【命题意图】本小题主要考查直线与平面垂直的判定,平面与平面垂直的判定,体积的求解,点到面的距
离等基础知识,考查空间想像能力、推理论证能力、运算求解能力等,考查化归与转化思想
等,体现基础性、综合性与应用性,导向对数学抽象、逻辑推理、直观想象、数学运算等核
心素养的关注.
【试题简析】 市质检数学(文科)试题 第 4 页(共 13 页)
解法一:(1)正方形 ABCD边长为 2,所以 AB AD , 2AB , ··········································· 1 分
因为 2PA , 6PB ,所以 2 2 2PA AB PB,所以 AB PA ,··················· 2 分
,PA AD 平面 PAD , PA AD A , ···························································· 3 分
所以 AB 平面 , ·················································································· 4 分
因为 AB 平面 ABCD, ················································································ 5 分
所以平面 PAD 平面 ABCD. ········································································· 6 分
(2)取 AD 中点 F ,连接 PF ,CF ,
因为 2 PDPA , 2AD ,所以 PF AD , 1PF , ································ 7 分
平面 平面 ,平面 PAD 平面 ABCD AD , PF 平面 PAD ,
(写两个即给分) ·························································································· 8 分
所以 PF 平面 ABCD, ················································································ 9 分
又因为 2ABCS ,所以 1 1 2213 3 3P ABC ABCV S PF △ , ··········· (体积公式)10 分
在 PBC△ 中, 2BC , 6PB PC,所以 5PBCS △ ,
记点 A 到平面 PBC 的距离为 d , 2
3 3
1
P ABC PBCV S d △ ,
所以 25
5d , ··············································································· (计算)11 分
又因为点 E 为线段 PA 的中点,点 到平面 的距离为 5
5
. ···························· 12 分
E
P
F
CD
A B
解法二:(1)取 中点 ,连接 ,CF ,
正方形 边长为 2,所以 1DF , 5CF ,
又因为 6PC ,所以 2 2 2PF CF PC,所以 PF CF , ···························· 1 分
又因为 ,所以 , ························································· 2 分
,CF AD 平面 , AD CF F , ························································ 3 分
所以 平面 , ················································································ 4 分
平面 , ························································································ 5 分 市质检数学(文科)试题 第 5 页(共 13 页)
所以平面 PAD 平面 ABCD. ········································································· 6 分
(2)同解法一.
19.( 12 分)
在直角坐标系 xOy 中,圆 22:4O x y与 y 轴正、负半轴分别交于点 ,AB.椭圆 以 AB 为短轴,
且离心率为 3
2
.
(1)求 的方程;
(2)过点 A 的直线l 分别与圆O ,曲线 交于点 M , N (异于点 A ).直线 ,BM BN 分别与 x 轴
交于点 ,CD.若| | | |NC ND ,求l 的方程.
【命题意图】本小题主要考查椭圆的方程、直线斜率、直线与圆锥曲线的交点等基础知识;考查运算求解、
逻辑推理能力;考查数形结合思想、转化化归思想;导向对数学运算、直观想象、逻辑推理
素养的关注.
【试题简析】
解法一:(1)依题意,椭圆的焦点在 x 轴.设 的方程为
22
221xy
ab. ····································· 1 分
依题意, 2b , 3
2
c
a .············································································· 3 分
又 2 2 2a b c, ··························································································· 4 分
求得 2 16a ,故 的方程为
22
116 4
xy. ························································ 5 分
(2)依题意, (0,2)A , (0, 2)B ,
设直线 :2l y kx( 0k ). ······································································ 6 分 市质检数学(文科)试题 第 6 页(共 13 页)
联立 :2l y kx与
22
:116 4
xy ,得 22(1 4 ) 16 0k x kx , ···························· 7 分
设 11( , )N x y ,依题意, 1 2
16
14
kx k
,
2
1 2
28
14
ky k
. ·········································· 8 分
依题意, BMAM ,
kkkk
lAM
BM
111 , ··········································· 9 分
故 1:2BM y xk ,点 ( 2 ,0)Ck . ····························································· 10 分
若| | | |NC ND ,则 NC BNkk . ····································································· 11 分
即
22
22
22
2 8 2 8 21 4 1 4
16 1621 4 1 4
kk
kk
kkkkk
( 0k ),解得 11
20k .
即存在 11:220l y x ,使得 . ··················································· 12 分
解法二:(1)同解法一;
(2)依题意, (0,2)A , (0, 2)B ,设直线 ( ). ······························ 6 分
联立 与 ,得 , ···························· 7 分
设 11( , )N x y ,依题意, 1 2
16
14
kx k
,
2
1 2
28
14
ky k
. ·········································· 8 分
依题意, , , ··········································· 9 分
故 ,点 . ····························································· 10 分
同理可得, 1:24BN y xk ,点 ( 8 ,0)Dk ,
若 ,则 ,CD中点的横坐标等于点 N 的横坐标,
即 2
16 2 8
1 4 2
k k k
k
( ), ·································································· 11 分
解得 .
即存在 ,使得 . ··················································· 12 分 市质检数学(文科)试题 第 7 页(共 13 页)
解法三:(1)同解法一;
(2)依题意, (0,2)A , (0, 2)B ,设直线 :2l y kx( 0k ). ······························ 6 分
联立 与
22
:116 4
xy ,得 22(1 4 ) 16 0k x kx , ···························· 7 分
设 11( , )N x y ,依题意, 1 2
16
14
kx k
,
2
1 2
28
14
ky k
. ·········································· 8 分
依题意, BMAM ,
kkkk
lAM
BM
111 , ··········································· 9 分
故 1:2BM y xk ,点 ( 2 ,0)Ck . ····························································· 10 分
同理可得, 1:24BN y xk ,点 ( 8 ,0)Dk ,
若| | | |NC ND ,得
22
2 2 2 2
2 2 2 2
16 2 8 16 2 8( 2 ) ( ) ( 8 ) ( )1 4 1 4 1 4 1 4
k k k kkkk k k k
( ), ············ 11 分
解得 11
20k .
即存在 11:220l y x ,使得 . ··················································· 12 分
20.(12 分)
鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏.小张从事鱼卷生产和批发多
年,有着不少来自零售商和酒店的客户.当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都
会在农历十二月底进行一次性采购.小张把去年年底采购鱼卷的数量 x(单位:箱)在[100,200) 的客户称
为“熟客”,并把他们去年采购的数量绘制成下表:
采购数
(单位:箱)
[100,120) [120,140) [140,160) [160,180) [180,200)
客户数 10 10 5 20 5
(1)根据表中的数据,在答题卡上补充完整这些数据的频率分布直方图,并估计采购数在 168 箱以
上(含 168 箱)的“熟客”人数; 市质检数学(文科)试题 第 8 页(共 13 页)
采购量
频率/组距
0.025
0.020
0.015
0.010
0.005
200180160140120100
(2)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的 5
8
,估算小张去年年底总
的销售量(同一组中的数据用该组区间的中点值作代表);
(3)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若
没有在网上出售鱼卷,则按去年的价格出售,每箱利润为 20 元,预计销售量与去年持平;若计划在网上
出售鱼卷,则需把每箱售价下调 2 至5 元,且每下调 m 元 (2 5)m,销售量可增加1000m箱,求小张
在今年年底收入Y (单位:元)的最大值.
【命题意图】本小题主要考查频率分布直方图,二次函数的最值;考查了学生利用统计知识解决实际问题
的能力;考查学生的阅读理解能力,信息提取能力,抽象概括能力;考查统计思想、数形结
合思想,体现基础性与应用性,导向对数据分析素养、直观想象素养的关注.
【试题简析】解:(1)由表一数据,补出直方图如下: ·······················(补对一个矩形给 1 分) 2 分
采购量
频率/组距
0.025
0.020
0.015
0.010
0.005
200180160140120100
根据上图,可知,采购数量在 168 以上的客户数量为:
180 16850 20 (0.005 0.020 ) 1720
(人) ················ (列式与计算各 1 分)4 分
(或由表一可得: 180 1685 20 1720
(人)). ............................................................ 4 分
(2)由图一可知,去年年底“熟客”所采购的鱼卷总数大约为:
110 10 130 10 150 5 170 20 190 5 7500 (箱),(列式与计算各 1 分)6 分
所以小张去年年底总的销售量为 57500 120008 (箱). ............................................. 7 分
(3)若没有在网上出售鱼卷,则今年年底小张的收入为12000 20 240000 (元); ....... 8 分
若小张在网上出售鱼卷,则今年年底的总销售量为12000 1000m (箱), 市质检数学(文科)试题 第 9 页(共 13 页)
每箱的利润为 20 m (元), ................................................................................................ 9 分
则小张在今年年底收入 (20 )(12000 1000 )Y m m .................................................... 10 分
1000(20 )(12 )mm
21000( 8 240)mm
21000[ ( 4) 256] 256000m (元). ......................... 11 分
又因为 256000 240000 ,所以小张在今年年底收入的最大值可达到 256000 (元).
................................................................................................................................................. 12 分
21.(12 分)
已知函数 xaxxaxf ln)( 22 .
(1)讨论 ()fx的单调性;
(2)若 )(xf 有两个大于1的零点,求 a 的取值范围.
【命题意图】本题考查导数的应用,利用导数研究函数的单调性、最值、零点等问题,考查抽象概括能力、
推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想、
数形结合思想、有限与无限思想,体现综合性、应用性与创新性,导向对发展数学抽象、逻
辑推理、直观想象、数学运算以及数学建模等核心素养的关注.
【试题简析】
解:(1) fx的定义域为 0, ,
2 1'( ) 2f x a x a x ·················································································· 1 分
222 1 (2 1)( 1)a x ax ax ax
xx
,
(i)当 0a 时, 0)(' xf ,所以 )(xf 在 ,0 单调递减; ·································· 2 分
(ii)当 0a 时,令 ,得
ax 10 ,令 0)(' xf ,得
ax 1 ;
···················································································· (未写暂不扣分)3 分
所以 在
a
1,0 单调递减,在
,1
a
单调递增; ···································· 4 分
(iii)当 0a 时,令 ,得
ax 2
10 , 令 ,得
ax 2
1 ;
所以 在
a2
1,0 单调递减,在
,2
1
a
单调递增. ···························· 5 分
(2)由(1)可得若函数 )(xf 有两个大于1的零点,则 0a ; ····································· 6 分 市质检数学(文科)试题 第 10 页(共 13 页)
(i)当 0a 时,需
2(1) 0,
11( ) ln 0,
1 1,
f a a
f aa
a
无解; ······················································ 7 分
(ii)当 0a 时,需
2(1) 0,
13( ) ln 2 0,24
1 1,2
f a a
faa
a
得 0
2
1
4
3 a
e
; ······················· 8 分
且当 时, )(xf 在
a2
1,1 递减, 0)2
1()1( aff ,所以 在
有一个零点; ································································································ 9 分
因为 2 2 2 2 2
1 1 1 1 1 1( ) ln lnf a a a a a a ,下证 ln 0xx:
令 lng x x x , 111 xgx xx
,当01x时, 0gx ,
函数递减;当 1x 时, 0gx ,函数递增;所以 1 1 ln1 0g x g ,
即 , ··························································································· 10 分
所以 2 2 2
1 1 1( ) ln 0f a a a , 2
11( ) ( ) 02ffaa ,
又 在
,2
1
a
递增,
所以 在 有一个零点; ····························································· 11 分
综上, a 的取值范围为 3
4
1 ,0
2e
. ································································ 12 分
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.
22.[选修 44 :坐标系与参数方程](10 分)
在直角坐标系 xOy 中,直线 :l y kx 的倾斜角为 ,曲线 22:( 1) ( 1) 8C x y .以坐标原点为
极点, x 轴正半轴为极轴建立极坐标系.
(1)求l 和C 的极坐标方程;
(2)若 与C 交于 ,AB两点,求 AO BO 的取值范围. 市质检数学(文科)试题 第 11 页(共 13 页)
【命题意图】本小题主要考查直线、圆的直角坐标方程与极坐标方程的互化,极坐标极角的几何意义,直
线与圆的位置关系等基础知识,考查运算求解能力,考查函数与方程思想、转化与化归思想、
数形结合思想,体现基础性与综合性,导向对发展直观想象、逻辑推理、数学运算等核心素
养的关注.
【试题简析】
解法一:(1)直线l 的极坐标方程为 () R ,( 未注明 R ,扣 1 分) ····························· 2 分
将 cos , sinxy 代入 222 2 6 0x y x y 中,(两公式各 1 分) ············ 4 分
得到曲线C 的极坐标方程为 2 2 cos 2 sin 6 0 .(直写答案不扣中间分) 5 分
(2)设 1( , )A , 2( , )B ,则 122cos 2sin , 12 6 , ···················· 6 分
所以 1 2 1 2|| |-| ||=|| | | ||=| |OA OB ,····························································· 7 分
=|2cos 2sin | 2 2 | sin( ) |4
, ········································ 8 分
因为0 ,则 5
4 4 4
, 2 sin( ) 124
, ···························· 9 分
所以0 || |-| || 2 2OA OB. ·········································································· 10 分
解法二:(1)同解法一;
(2)直线 的参数方程为
cos
sin
xt
yt
(t 为参数, ), ···································· 6 分
代入 中,得到 2 2 cos -2 sin 6 0t t t ,
所以 1 2 1 2|| |-| ||=||t | | t ||= | t +t |OA OB , ······························································· 7 分
| 2cos +2sin | 2 2 | sin( ) |4
, ········································ 8 分
因为 ,则 , , ···························· 9 分
所以0 || | | || 2 2OA OB . ·········································································· 10 分
解法三:(1)同解法一;
(2)设曲线C 的圆心 ,半径为 r .
考察图形易知,当直线 过 时,|| |-| ||OA OB 取到最大值, ···································· 6 分
max|| |-| ||) =(r+|OC|)-(r-|OC|)=2|OC|=2 2|OA OB( . ················································ 7 分
当直线l OC 时, 取到最小值, ······················································· 8 分
min|| |-| ||) =0OA OB( . ························································································· 9 分 市质检数学(文科)试题 第 12 页(共 13 页)
所以0 || | | || 2 2OA OB . ········································································· 10 分
23.[选修 45 :不等式选讲](10 分)
已知函数 ( ) | 1| | 3|f x x x .
(1)求 ( ) 3fx 的解集;
(2)若关于 x 的不等式
2 36() mmfx m
的解集非空,求 m 的取值范围.
【命题意图】本小题主要考查绝对值不等式的解法、不等式解集的概念、绝对值的意义等基础知识,考查
抽象概括能力、运算求解能力,考查分类与整合的思想,转化与化归的思想,体现基础性与
综合性,导向对发展逻辑推理、数学运算、直观想象等核心素养的关注.
【试题简析】
解法一:(1)
4 2 , 1,
( ) 2, 1 3,
2 4, 3,
xx
f x x
xx
·············································································· 2 分
其图象如下图所示:
当 1x 时,由 4 2 3x,得 1
2x , ······························································· 3 分
当 3x 时,由 2 4 3x ,得 7
2x , ······························································ 4 分
所以不等式的解集为 17+22(-,)( , ).·························································· 5 分
注:不作图象,不扣分数.
(2)关于 的不等式 的解集非空,等价于
2
min
36() mmfx m
, ······ 6 分
由( 1)得 min ( ) 2fx ,(或由| 1| | 3| | ( 1) ( 3) | 2x x x x )(当13x时取等号)
所以原命题成立的等价条件为
2 362mm
m
. ················································ 7 分
当 0m 时, 22 3 6m m m ,解得 16mm 或 ,得 6m , ························ 8 分
当 0m 时, 22 3 6m m m ,解得 16m ,得 10m , ······················· 9 分 市质检数学(文科)试题 第 13 页(共 13 页)
所以 m 的取值范围为 1,0 6, .···························································· 10 分
解法二:(2)考察
4 2 , 1,
( ) 2, 1 3,
2 4, 3,
xx
f x x
xx
的图象,可知“关于 x 的不等式
2 36() mmfx m
的解集
非空”等价于“
2 362mm
m
”. ··································································· 7 分
下同解法一.