福建泉州市2019届高三文科数学3月质检试卷(带解析)
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
市质检数学(文科)试题 第 1 页(共 13 页) 保密★启用前 泉州市 2019 届普通高中毕业班第一次质量检查 文 科 数 学 2019.2 三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题,每个试题考 生都必须作答.第 22、23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(12 分) ABC△ 的内角 ,,A B C 的对边分别为 ,,abc.已知 5b  ,   sin 2 sina b A b A C   . (1)证明: 为等腰三角形; (2)点 D 在边 AB 上, 2AD BD , 17CD  ,求 AB . 【命题意图】本小题主要考查正弦定理,余弦定理等解三角形的基础知识,考查推理论证能力与运算求解 能力等,考查数形结合思想、化归与转化思想、函数与方程思想等,体现基础性、综合性与 应用性,导向对发展直观想象、逻辑推理、数学运算及数学建模等核心素养的关注. 【试题简析】 解法一:(1) 中,   sin 2 sin 2 sina b A b A C b B    , ··········································· 1 分 由正弦定理 sin sin ab AB ,················································································ 4 分 得:   22a a b b , 整理得:  20a b a b   , ··········································································· 5 分 因为 20ab,所以 ab , 所以 为等腰三角形. ··············································································· 6 分 (2)设 BD x ,则 2AD x , 由余弦定理,得: 24 17 25cos 2 2 17 xCDA x   , 2 17 25cos 2 17 xCDB x   , ······································ 9 分 因为 πCDA CDB   ,所以 224 17 25 17 25 2 2 17 2 17 xx xx         , ···························· 10 分 解得: 2x  ,所以 6AB  . ·············································································· 12 分 市质检数学(文科)试题 第 2 页(共 13 页) C BDA 解法二:(1) ABC△ 中,   sin 2 sin 2 sina b A b A C b B    , ··········································· 1 分 由正弦定理,得: 2(sin sin )sin 2sinA B A B, ··············································· 4 分 化简得:  (sin 2sin ) sin sin 0A B A B   , 又因为  , 0,πAB ,所以sin 2sin 0AB, 所以sin sinAB , ·························································································· 5 分 所以 AB ,或 πAB(舍去), 所以 为等腰三角形. ················································································ 6 分 (2)取 AB 中点 E ,连接CE ,由(1)得, 为等腰三角形,所以CE AB , ·········· 8 分 设 BD x , 则 2AD x, 3 2BE x , 1 2DE x , ································································· 9 分 由勾股定理得: 221317 2522xx            , ························································ 11 分 解得: 2x  ,所以 6AB  . ·············································································· 12 分 E C BDA 解法三:(1)同解法一; (2)因为 2AD BD ,所以 12 33CD CA CB, ························································· 7 分 所以 2 2 21 4 4 9 9 9CD CA CA CB CB   ,所以 25 4 45 5 cos 25 179 9 9BCA        , 8 分 所以 7cos 25BCA, ····················································································· 9 分 由余弦定理,得: 2 725 25 2 5 5 3625AB        , ·········································· 11 分 市质检数学(文科)试题 第 3 页(共 13 页) 所以 6AB  . ·································································································· 12 分 解法四:(1)同解法一; (2)作 //DF AC 交 BC 于 F , 2AD BD , 则 15 33DF AC, 2 10 33CF AB , ······························································ 7 分 由余弦定理,得: 2 2 2 cos 2 CD CF DFDCF CD CF   , ············································· 9 分 所以 100 2517 19 1799cos 10 852 17 3 DCF      . ························································· 10 分 由余弦定理,得: 2 19 1725 17 2 17 5 485BD        , ·································· 11 分 所以 2BD  ,所以 . ·············································································· 12 分 F C BDA 18.(12 分) 如图,在四棱锥 ABCDP  中,底面 ABCD是边长为 2 的正方形, 2 PDPA , 6PB PC. (1)证明:平面 PAD 平面 ABCD; (2)若点 E 为线段 PA 的中点,求 到平面 PBC 的距离. E P CD A B 【命题意图】本小题主要考查直线与平面垂直的判定,平面与平面垂直的判定,体积的求解,点到面的距 离等基础知识,考查空间想像能力、推理论证能力、运算求解能力等,考查化归与转化思想 等,体现基础性、综合性与应用性,导向对数学抽象、逻辑推理、直观想象、数学运算等核 心素养的关注. 【试题简析】 市质检数学(文科)试题 第 4 页(共 13 页) 解法一:(1)正方形 ABCD边长为 2,所以 AB AD , 2AB  , ··········································· 1 分 因为 2PA  , 6PB  ,所以 2 2 2PA AB PB,所以 AB PA ,··················· 2 分 ,PA AD  平面 PAD , PA AD A , ···························································· 3 分 所以 AB 平面 , ·················································································· 4 分 因为 AB  平面 ABCD, ················································································ 5 分 所以平面 PAD 平面 ABCD. ········································································· 6 分 (2)取 AD 中点 F ,连接 PF ,CF , 因为 2 PDPA , 2AD  ,所以 PF AD , 1PF  , ································ 7 分 平面 平面 ,平面 PAD 平面 ABCD AD , PF 平面 PAD , (写两个即给分) ·························································································· 8 分 所以 PF  平面 ABCD, ················································································ 9 分 又因为 2ABCS  ,所以 1 1 2213 3 3P ABC ABCV S PF      △ , ··········· (体积公式)10 分 在 PBC△ 中, 2BC  , 6PB PC,所以 5PBCS △ , 记点 A 到平面 PBC 的距离为 d , 2 3 3 1 P ABC PBCV S d   △ , 所以 25 5d  , ··············································································· (计算)11 分 又因为点 E 为线段 PA 的中点,点 到平面 的距离为 5 5 . ···························· 12 分 E P F CD A B 解法二:(1)取 中点 ,连接 ,CF , 正方形 边长为 2,所以 1DF  , 5CF  , 又因为 6PC  ,所以 2 2 2PF CF PC,所以 PF CF , ···························· 1 分 又因为 ,所以 , ························································· 2 分 ,CF AD  平面 , AD CF F , ························································ 3 分 所以 平面 , ················································································ 4 分 平面 , ························································································ 5 分 市质检数学(文科)试题 第 5 页(共 13 页) 所以平面 PAD 平面 ABCD. ········································································· 6 分 (2)同解法一. 19.( 12 分) 在直角坐标系 xOy 中,圆 22:4O x y与 y 轴正、负半轴分别交于点 ,AB.椭圆 以 AB 为短轴, 且离心率为 3 2 . (1)求 的方程; (2)过点 A 的直线l 分别与圆O ,曲线  交于点 M , N (异于点 A ).直线 ,BM BN 分别与 x 轴 交于点 ,CD.若| | | |NC ND ,求l 的方程. 【命题意图】本小题主要考查椭圆的方程、直线斜率、直线与圆锥曲线的交点等基础知识;考查运算求解、 逻辑推理能力;考查数形结合思想、转化化归思想;导向对数学运算、直观想象、逻辑推理 素养的关注. 【试题简析】 解法一:(1)依题意,椭圆的焦点在 x 轴.设  的方程为 22 221xy ab. ····································· 1 分 依题意, 2b  , 3 2 c a  .············································································· 3 分 又 2 2 2a b c, ··························································································· 4 分 求得 2 16a  ,故 的方程为 22 116 4 xy. ························································ 5 分 (2)依题意, (0,2)A , (0, 2)B  , 设直线 :2l y kx( 0k  ). ······································································ 6 分 市质检数学(文科)试题 第 6 页(共 13 页) 联立 :2l y kx与 22 :116 4 xy   ,得 22(1 4 ) 16 0k x kx   , ···························· 7 分 设 11( , )N x y ,依题意, 1 2 16 14 kx k   , 2 1 2 28 14 ky k   . ·········································· 8 分 依题意, BMAM  , kkkk lAM BM 111  , ··········································· 9 分 故 1:2BM y xk   ,点 ( 2 ,0)Ck . ····························································· 10 分 若| | | |NC ND ,则 NC BNkk . ····································································· 11 分 即 22 22 22 2 8 2 8 21 4 1 4 16 1621 4 1 4 kk kk kkkkk  ( 0k  ),解得 11 20k  . 即存在 11:220l y x   ,使得 . ··················································· 12 分 解法二:(1)同解法一; (2)依题意, (0,2)A , (0, 2)B  ,设直线 ( ). ······························ 6 分 联立 与 ,得 , ···························· 7 分 设 11( , )N x y ,依题意, 1 2 16 14 kx k   , 2 1 2 28 14 ky k   . ·········································· 8 分 依题意, , , ··········································· 9 分 故 ,点 . ····························································· 10 分 同理可得, 1:24BN y xk   ,点 ( 8 ,0)Dk , 若 ,则 ,CD中点的横坐标等于点 N 的横坐标, 即 2 16 2 8 1 4 2 k k k k    ( ), ·································································· 11 分 解得 . 即存在 ,使得 . ··················································· 12 分 市质检数学(文科)试题 第 7 页(共 13 页) 解法三:(1)同解法一; (2)依题意, (0,2)A , (0, 2)B  ,设直线 :2l y kx( 0k  ). ······························ 6 分 联立 与 22 :116 4 xy   ,得 22(1 4 ) 16 0k x kx   , ···························· 7 分 设 11( , )N x y ,依题意, 1 2 16 14 kx k   , 2 1 2 28 14 ky k   . ·········································· 8 分 依题意, BMAM  , kkkk lAM BM 111  , ··········································· 9 分 故 1:2BM y xk   ,点 ( 2 ,0)Ck . ····························································· 10 分 同理可得, 1:24BN y xk   ,点 ( 8 ,0)Dk , 若| | | |NC ND ,得 22 2 2 2 2 2 2 2 2 16 2 8 16 2 8( 2 ) ( ) ( 8 ) ( )1 4 1 4 1 4 1 4 k k k kkkk k k k            ( ), ············ 11 分 解得 11 20k  . 即存在 11:220l y x   ,使得 . ··················································· 12 分 20.(12 分) 鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏.小张从事鱼卷生产和批发多 年,有着不少来自零售商和酒店的客户.当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都 会在农历十二月底进行一次性采购.小张把去年年底采购鱼卷的数量 x(单位:箱)在[100,200) 的客户称 为“熟客”,并把他们去年采购的数量绘制成下表: 采购数 (单位:箱) [100,120) [120,140) [140,160) [160,180) [180,200) 客户数 10 10 5 20 5 (1)根据表中的数据,在答题卡上补充完整这些数据的频率分布直方图,并估计采购数在 168 箱以 上(含 168 箱)的“熟客”人数; 市质检数学(文科)试题 第 8 页(共 13 页) 采购量 频率/组距 0.025 0.020 0.015 0.010 0.005 200180160140120100 (2)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的 5 8 ,估算小张去年年底总 的销售量(同一组中的数据用该组区间的中点值作代表); (3)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若 没有在网上出售鱼卷,则按去年的价格出售,每箱利润为 20 元,预计销售量与去年持平;若计划在网上 出售鱼卷,则需把每箱售价下调 2 至5 元,且每下调 m 元 (2 5)m,销售量可增加1000m箱,求小张 在今年年底收入Y (单位:元)的最大值. 【命题意图】本小题主要考查频率分布直方图,二次函数的最值;考查了学生利用统计知识解决实际问题 的能力;考查学生的阅读理解能力,信息提取能力,抽象概括能力;考查统计思想、数形结 合思想,体现基础性与应用性,导向对数据分析素养、直观想象素养的关注. 【试题简析】解:(1)由表一数据,补出直方图如下: ·······················(补对一个矩形给 1 分) 2 分 采购量 频率/组距 0.025 0.020 0.015 0.010 0.005 200180160140120100 根据上图,可知,采购数量在 168 以上的客户数量为: 180 16850 20 (0.005 0.020 ) 1720      (人) ················ (列式与计算各 1 分)4 分 (或由表一可得: 180 1685 20 1720    (人)). ............................................................ 4 分 (2)由图一可知,去年年底“熟客”所采购的鱼卷总数大约为: 110 10 130 10 150 5 170 20 190 5 7500          (箱),(列式与计算各 1 分)6 分 所以小张去年年底总的销售量为 57500 120008 (箱). ............................................. 7 分 (3)若没有在网上出售鱼卷,则今年年底小张的收入为12000 20 240000 (元); ....... 8 分 若小张在网上出售鱼卷,则今年年底的总销售量为12000 1000m (箱), 市质检数学(文科)试题 第 9 页(共 13 页) 每箱的利润为 20 m (元), ................................................................................................ 9 分 则小张在今年年底收入 (20 )(12000 1000 )Y m m   .................................................... 10 分 1000(20 )(12 )mm   21000( 8 240)mm    21000[ ( 4) 256] 256000m     (元). ......................... 11 分 又因为 256000 240000 ,所以小张在今年年底收入的最大值可达到 256000 (元). ................................................................................................................................................. 12 分 21.(12 分) 已知函数 xaxxaxf ln)( 22  . (1)讨论 ()fx的单调性; (2)若 )(xf 有两个大于1的零点,求 a 的取值范围. 【命题意图】本题考查导数的应用,利用导数研究函数的单调性、最值、零点等问题,考查抽象概括能力、 推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想、 数形结合思想、有限与无限思想,体现综合性、应用性与创新性,导向对发展数学抽象、逻 辑推理、直观想象、数学运算以及数学建模等核心素养的关注. 【试题简析】 解:(1)  fx的定义域为 0, , 2 1'( ) 2f x a x a x   ·················································································· 1 分 222 1 (2 1)( 1)a x ax ax ax xx     , (i)当 0a 时, 0)(' xf ,所以 )(xf 在 ,0 单调递减; ·································· 2 分 (ii)当 0a 时,令 ,得 ax 10  ,令 0)(' xf ,得 ax 1 ; ···················································································· (未写暂不扣分)3 分 所以 在      a 1,0 单调递减,在      ,1 a 单调递增; ···································· 4 分 (iii)当 0a 时,令 ,得 ax 2 10  , 令 ,得 ax 2 1 ; 所以 在       a2 1,0 单调递减,在       ,2 1 a 单调递增. ···························· 5 分 (2)由(1)可得若函数 )(xf 有两个大于1的零点,则 0a ; ····································· 6 分 市质检数学(文科)试题 第 10 页(共 13 页) (i)当 0a 时,需 2(1) 0, 11( ) ln 0, 1 1, f a a f aa a             无解; ······················································ 7 分 (ii)当 0a 时,需   2(1) 0, 13( ) ln 2 0,24 1 1,2 f a a faa a              得 0 2 1 4 3  a e ; ······················· 8 分 且当 时, )(xf 在       a2 1,1 递减, 0)2 1()1(  aff ,所以 在 有一个零点; ································································································ 9 分 因为 2 2 2 2 2 1 1 1 1 1 1( ) ln lnf a a a a a a     ,下证 ln 0xx: 令   lng x x x ,   111 xgx xx     ,当01x时,   0gx  , 函数递减;当 1x  时,   0gx  ,函数递增;所以    1 1 ln1 0g x g    , 即 , ··························································································· 10 分 所以 2 2 2 1 1 1( ) ln 0f a a a   , 2 11( ) ( ) 02ffaa   , 又 在       ,2 1 a 递增, 所以 在 有一个零点; ····························································· 11 分 综上, a 的取值范围为 3 4 1 ,0 2e   . ································································ 12 分 (二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修 44 :坐标系与参数方程](10 分) 在直角坐标系 xOy 中,直线 :l y kx 的倾斜角为 ,曲线 22:( 1) ( 1) 8C x y    .以坐标原点为 极点, x 轴正半轴为极轴建立极坐标系. (1)求l 和C 的极坐标方程; (2)若 与C 交于 ,AB两点,求 AO BO 的取值范围. 市质检数学(文科)试题 第 11 页(共 13 页) 【命题意图】本小题主要考查直线、圆的直角坐标方程与极坐标方程的互化,极坐标极角的几何意义,直 线与圆的位置关系等基础知识,考查运算求解能力,考查函数与方程思想、转化与化归思想、 数形结合思想,体现基础性与综合性,导向对发展直观想象、逻辑推理、数学运算等核心素 养的关注. 【试题简析】 解法一:(1)直线l 的极坐标方程为 ()  R ,( 未注明   R ,扣 1 分) ····························· 2 分 将 cos , sinxy   代入 222 2 6 0x y x y     中,(两公式各 1 分) ············ 4 分 得到曲线C 的极坐标方程为 2 2 cos 2 sin 6 0        .(直写答案不扣中间分) 5 分 (2)设 1( , )A , 2( , )B ,则 122cos 2sin      , 12 6  , ···················· 6 分 所以 1 2 1 2|| |-| ||=|| | | ||=| |OA OB    ,····························································· 7 分 =|2cos 2sin | 2 2 | sin( ) |4      , ········································ 8 分 因为0 ,则 5 4 4 4      , 2 sin( ) 124     , ···························· 9 分 所以0 || |-| || 2 2OA OB. ·········································································· 10 分 解法二:(1)同解法一; (2)直线 的参数方程为 cos sin xt yt      (t 为参数, ), ···································· 6 分 代入 中,得到 2 2 cos -2 sin 6 0t t t   , 所以 1 2 1 2|| |-| ||=||t | | t ||= | t +t |OA OB  , ······························································· 7 分 | 2cos +2sin | 2 2 | sin( ) |4      , ········································ 8 分 因为 ,则 , , ···························· 9 分 所以0 || | | || 2 2OA OB   . ·········································································· 10 分 解法三:(1)同解法一; (2)设曲线C 的圆心 ,半径为 r . 考察图形易知,当直线 过 时,|| |-| ||OA OB 取到最大值, ···································· 6 分 max|| |-| ||) =(r+|OC|)-(r-|OC|)=2|OC|=2 2|OA OB( . ················································ 7 分 当直线l OC 时, 取到最小值, ······················································· 8 分 min|| |-| ||) =0OA OB( . ························································································· 9 分 市质检数学(文科)试题 第 12 页(共 13 页) 所以0 || | | || 2 2OA OB   . ········································································· 10 分 23.[选修 45 :不等式选讲](10 分) 已知函数 ( ) | 1| | 3|f x x x    . (1)求 ( ) 3fx 的解集; (2)若关于 x 的不等式 2 36() mmfx m  的解集非空,求 m 的取值范围. 【命题意图】本小题主要考查绝对值不等式的解法、不等式解集的概念、绝对值的意义等基础知识,考查 抽象概括能力、运算求解能力,考查分类与整合的思想,转化与化归的思想,体现基础性与 综合性,导向对发展逻辑推理、数学运算、直观想象等核心素养的关注. 【试题简析】 解法一:(1) 4 2 , 1, ( ) 2, 1 3, 2 4, 3, xx f x x xx       ·············································································· 2 分 其图象如下图所示: 当 1x  时,由 4 2 3x,得 1 2x  , ······························································· 3 分 当 3x  时,由 2 4 3x ,得 7 2x  , ······························································ 4 分 所以不等式的解集为 17+22(-,)( , ).·························································· 5 分 注:不作图象,不扣分数. (2)关于 的不等式 的解集非空,等价于 2 min 36() mmfx m  , ······ 6 分 由( 1)得 min ( ) 2fx ,(或由| 1| | 3| | ( 1) ( 3) | 2x x x x        )(当13x时取等号) 所以原命题成立的等价条件为 2 362mm m  . ················································ 7 分 当 0m  时, 22 3 6m m m   ,解得 16mm  或 ,得 6m  , ························ 8 分 当 0m  时, 22 3 6m m m   ,解得 16m   ,得 10m   , ······················· 9 分 市质检数学(文科)试题 第 13 页(共 13 页) 所以 m 的取值范围为   1,0 6,  .···························································· 10 分 解法二:(2)考察 4 2 , 1, ( ) 2, 1 3, 2 4, 3, xx f x x xx       的图象,可知“关于 x 的不等式 2 36() mmfx m  的解集 非空”等价于“ 2 362mm m  ”. ··································································· 7 分 下同解法一.

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料