第 1 页 共 6 页
2019 学年第一学期期中考试高三数学参考答案
选择题部分(共 40 分)
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
题号 1 2 3 4 5 6 7 8 9 10
答案 C B C D B C B B B C
非选择题部分(共 110 分)
二、填空题:本小题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。
11.36 8 12.
33 153 ,22
13.15,64 14. 1
3
22
15.32 23+ 16. 2 17. 2
3
p
三、解答题:本大题共 5 小题,共 74 分。解答应写出文字说明、证明过程或演算步骤。
18.(本题满分 14 分)
(Ⅰ)由定义 13cos ,sin22aa==········································1 分
25 5cos ,sin55bb=- = ···································2 分
2 34cos 2 2cos 1 ,sin 2 2sin cos55bb bbb\= -== =-·········4 分
cos(2 ) cos 2 cos sin 2 sinb ababa\-= +
31 4 3 3 43
52 5 2 10
-=×-× = ·······················7 分
(Ⅱ)由 13cos ,sin22aa==可知 2,3 kkZpap= +Î
() 2sin( ) 2sin( 2 ) 2sin( )33fx x x k xp ppa p p p=+=++=+········9 分
∴最小正周期
222T pp
w p===·······································11 分
求单调递减区间:
322,232kx kkZpppp p p+ £ + £ +Î
第 2 页 共 6 页
∴ ()f x 单调递减区间为
172, 2 ,66kkkZéù+ +Îêúêúëû························14 分
19.(本题满分 15 分)
(Ⅰ)证明 ∵四边形 ABCD 是正方形,四边形 BDEF 为矩形,
∴BF⊥BD,
又∵AC⊥BF,AC,BD 为平面 ABCD 内两条相交直线,
∴BF⊥平面 ABCD. ························································6 分
(Ⅱ)解 假设二面角 C-BG-D 的大小可以为 60°,
由(Ⅰ)知 BF⊥平面 ABCD,以 A 为原点,分别以 AB,AD 为 x 轴,y 轴建立空间直角坐
标系,如图所示,不妨设 AB=AD=2,BF=h(h>0),
则 A(0,0,0),B(2,0,0),D(0,2,0),C(2,2,0),EF 的中点 G(1,1,h),
BG→ =(-1,1,h),BC→=(0,2,0).
设平面 BCG 的法向量为 n=(x,y,z),···································9 分
则
BG→ ·n=0,
BC→·n=0,
即
-x+y+hz=0,
2y=0, 取 n=(h,0,1).
由于 AC⊥BF,AC⊥BD,
∴AC⊥平面 BDG,平面 BDG 的法向量为AC→=(2,2,0). ·················12 分
由题意得 cos 60°=
n·AC→
|n|·|AC→|
= 2h
h2+1· 4+4
,
解得 h=1,此时BF
BC=1
2.
∴当BF
BC=1
2时,二面角 C-BG-D 的大小为 60°. ··························15 分
20.(本题满分 15 分)
(Ⅰ)∵{}na 是等比数列,设其公比为 q
第 3 页 共 6 页
又 3
46 13 13()8()aa qaa aa+= + = +
32
1(8)(1)0qqa\- + =
2
110 0qa ,+> > 3 80 2qq,\-= =
又 1 1a =
12n
na -\= ·························································2 分
2
11()nnnnnb SS + ++× = ×
即 2
11()()nnnnnnS S SS+++× - = ×
即 2
1
11 1 11
1nnSS nnnn+
-= =-++
111
111111 11111nnnSn SnSn S+-
\ - = - = - = ××× = - =+-
1n
nS n\=+
···························································5 分
∴当 2n ³ 时, 1 2
11
1nnn
nnbSS nnnn-
-=- = - =+ +
························6 分
又经检验, 1 2
11
211b ==+
,也符合该式
∴ 2
1
nb nn= +
··························································7分
(Ⅱ) 1
1= (1) 2n n
nn
nc nab -=+
··············································8 分
012 1
123= 222 2n n
nT -\+++×××+ ①
123 1
123 1=222 2 2 2
n
nn
T nn
-
-\+++×××++ ②
① - ②可得
012 1 1
111 1 1=222 22 2 2 2 2
n
nn nn
T nn
--+++×××+- =- -
012 1 2 1
111 1 1=4222 2 2 2 2n nn n n
nnT ---+++×××+- =- - ·······················11 分
21 1
14(1)422 2nn nn n
nnTcll-- -\+ =- - +-×
由韦达定理, 1222M
yyym+==··········································2 分
2l 分别交C 于 A , B 两点, 2l\ 不平行于 x 轴, 0m¹
又 21ll ^
设 2
12:1lx ymm=- + + , D 33(, )x y
联立 2l 与C 方程,得 2 4840yymm+--=,且 0D >
N 为QD 中点
由韦达定理, 03 2
2N
yyy m
+==- ········································4 分
∴ 124MNyy mm-= +³
当 1m 时取到等号
∴ M Nyy- 的最小值为 4 ················································6 分
(Ⅱ)当 1l 不经过点Q 时, 2ABQM= 等价于QA QB^ ,即 1QA QBkk× =- ·······8 分
设 1 :25lxmym=++, A 11(, )x y , B 22(, )x y
由(Ⅰ)联立方程可得韦达定理, 124y ym+= , 12 820yy m= --··········10 分
又 10 10
22
0110 10
4=
44
QA
yy yyk yyx xyy
--==-+-
,同理
20
4
QBk yy= +
·················12 分
1020
16 1()()QA QBkk yyyy\× = =-++
第 5 页 共 6 页
2
12 0 1 2 0()160yy y y y y\+ +++=
代入整理得 2
004( 2) 4 0my y-+ -=
要使该式恒成立,则 0
2
0
20
40
y
y
ì -=ïí -=ïî
,解得 0 2y = , 0 1x = ···················14 分
又经检验,当 1l 经过点Q 时, 2ABQM= 仍然成立
∴存在 0 2y = 使得 2ABQM= 恒成立,即证毕·························15 分
22.(本题满分 15 分)
(Ⅰ) 当 1a =- 时, 2() lnf xxxbx=+-
∴
2121'( ) 2 x bxfx xbxx
- +=+ -= (0)x > ·······························1 分
∵ 1x , 2x 为 ()f x 的两个不同极值点
∴ 1x , 2x 为方程 2210xbx-+=的两不等正根
∴ 2
1121bx x=+, 2
2221bx x=+
且由韦达定理 12
1
2xx = ·················································2 分
22
12 111222( ) ( ) (ln ) (ln )f x fx xxbx xxbx+=+-++-
22
12 1 2ln 2xx x x= ---····································4 分
12 12ln 2 2 ln 2 3xx xx++
()hm 在 (0,1) 单调递增
() (1)0hm h ,证毕··········································15 分
由开始时所给分析可知,所需证明结论已经证明完毕