厦门市 2020 届高中毕业班第一次质量检查参考答案
文科数学
一、选择题:
CADAC DCACB CB
二、填空题:
13. 2− 14.1 15. 6
3
16. 67 ,10 3 2 21−
三、解答题:
17.本题主要考查等差、等比数列的定义,考查分组求和法、等比数列的求和运算以及对数运算;考查运算求解
能力;考查化归与转化思想等.满分 12 分.
解:(1)因为1, na , +1na 成等差数列,所以 121nnaa+=+, ······················································1 分
当 1n = 时,有 122 1=6aa=+ ,得 1 3a = ,···········································································2 分
所以 +1 1 2( 1)nnaa− = − ,又 1 12a −= ,所以 1 1 21
n
n
a
a
+ − =− ,
所以 1na − 是首项为 2 ,公比为 2 的等比数列. ····································································5 分
(2)由(1)知 1na − 是首项为 2 ,公比为 2 的等比数列,
所以 11 2 2 2nn
na −− = = ,所以 21n
na =+. ········································································6 分
所以 1 2 3(2 1) (2 1) (2 1) (2 1)n
nS = + + + + + + + + ··································································7 分
1 2 3(2 2 2 2 )n n= + + + + + 2(1 2 )
12
n
n−=+−
122n n+= + − , ······················································9 分
所以 2log 10nS 即 1 102 2 2n n+ + − , ················································································10 分
因为 1(2 2) [2 ( 1) 2] 2 1 0n n nnn+ + − − + − − = + ,所以数列 1{2 2}n n+ +− 为递增数列.
当 9n = 时, 10 102 9 2 2+ − ,不满足,当 8n = 时, 9 102 8 2 2+ − 满足.
所以满足不等式 2log 10nS 的最大的正整数 n 的值为8 . ······················································12 分
18.本题考查直线的方程、抛物线的定义及轨迹方程、直线与圆锥曲线的关系等知识;考查运算求解能力、推
理论证能力等;考查数形结合思想、函数与方程思想、化归与转化思想等.满分 12 分.
解:(1)法一:依题意:平面内动点 E 到定点 F (0,1) 和到定直线 1y =− 的距离相等, ····················1 分
根据抛物线的定义,曲线C 是以点 F 为焦点,直线 1y =− 为准线的抛物线,
其方程为 2 4xy= . ········································································································3 分
法二:设点 E ( , )xy,依题意有: 1EF y=+, ·································································1 分
即 22( 1) 1x y y+ − = + ,化简得到C 的方程为 2 4xy= . ························································3 分
(2)法一:依题意可设直线l 的方程为: 1y kx=+, A 11( , )xy, B 22( , )xy, 0( , 1)Qx − . 联立 2
1
4
y kx
xy
=+ =
,得 2 4 4 0x kx− − = ,得 124x x k+= , 12 4xx =− ·············································5 分
由 1228AB y y= + + = ,得 2
1 2 1 2( ) 2 4 2 6y y k x x k+ = + + = + = ,
所以 2 1k = ,即 1k = ,又由 0k ,得 1k = , ··································································7 分
故: 124xx+=, 12 4xx = − , 126yy+=, 121yy=.
1 0 1( , 1)QA x x y= − + , 2 0 2( , 1)QB x x y= − + , 2
1 2 1 2 0 0 1 2 1 2( ) 1QA QB x x x x x x y y y y = − + + + + + + ,
化简得: 2
004 3 0xx− + = ,解得 0 1x = 或3 ,即 (1, 1)Q − 或 (3, 1)Q − . ··········································10 分
当Q 为 (1, 1)− 时,点Q 到直线l 的距离为 |1 1 1| 3 2
22
++ = , 1 3 28 6 222QABS = = ;
当Q 为 (3, 1)− 时,点Q 到直线l 的距离为 |3 1 1| 5 2
22
++ = , 1 5 28 10 222QABS = = . ···············12 分
法二:依题意可设直线l 的方程为: 1y kx=+. A 11( , )xy, B 22( , )xy, 0( , 1)Qx − .
联立 2
1
4
y kx
xy
=+ =
,得 2 4 4 0x kx− − = ,得 124x x k+= , 12 4xx =− , ··········································5 分
由 1228AB y y= + + = ,得 2
1 2 1 2( ) 2 4 2 6y y k x x k+ = + + = + = ,
所以 2 1k = ,即 1k = ,又由 0k ,得 1k = , ··································································7 分
解得 (2 2 2,3 2 2)A −−, (2 2 2,3 2 2)B ++,
故而: 0(2 2 2 ,4 2 2)QA x= − − − , 0(2 2 2 ,4 2 2)QB x= + − + ,
22
0 0 0 04 8 4 16 8 4 4 1QA QB x x x x = − + − + − = − + = ,解得 0 1x = 或3 ,
得 (1, 1)Q − 或 (3, 1)Q − . ·····································································································10 分
当Q 为 (1, 1)− 时,点Q 到直线l 的距离为 |1 1 1| 3 2
22
++ = , 1 3 28 6 222QABS = = ;
当Q 为 (3, 1)− 时,点Q 到直线l 的距离为 |3 1 1| 5 2
22
++ = , 1 5 28 10 222QABS = = . ···············12 分
19. 本题考查直线与平面平行和直线与平面垂直、体积等基础知识;考查空间想象能力、运算求解能力、推理
论证能力;考查数形结合思想、化归与转化思想等.满分 12 分.
证明:(1)法一:如图,取 PB 的中点G ,连接GC , EG .
E 是 PA的中点, //EG AB ,且 1
2EG AB= ,
又 正方形 ABCD , //AB CD , AB CD= ,
//EG CD ,且 1
2EG CD= . F 是CD 的中点, 1
2FC CD= , //FC EG 且 FC EG= ,
四边形 EGCF 是平行四边形, //EF GC , ····································································2 分
又 GC PBC 平面 , EF PBC 平面 , //EF PBC 平面 . ·················································· 4 分
法二:如图,连接 AF 并延长,交 BC 的延长线于 H 点.
//FC AB 且 F 是CD 的中点,
1
2
HF FC
AH AB = = , F 是 AH 的中点,
E 是 AP 的中点, //EF PH . ·······················································································2 分
H BC , PH PBC平面 ,又 EF PBC 平面 , //EF PBC 平面 . ································4 分
法三:如图,取 AB 中点 M ,连接 EM , FM .
,EM分别是 ,AP AB 的中点, //EM PB ,
又 EM PBC 平面 , PB PBC 平面 , //EM PBC 平面 .
,FM分别是 ,CD AB的中点, //FC MB ,且 FC BM= ,
四边形 BMFC 是平行四边形, //MF BC ,
又 FM PBC 平面 , BC PBC 平面 , //MF PBC 平面 . ···············································3 分
又 EM MF M= , //EFM PBC平面 平面 .
EF EFM 平面 , //EF PBC 平面 . ············································································4 分
解:(2)如图,取 PB 的中点G ,由(1)可知, //EG CD ,所以过 ,,E F C 的平面即为平面 EGCD . ·····5 分
PAD 是等边三角形, E 是 AP 中点, EP ED⊥ .
在正方形 ABCD 中, AB AD⊥ ,
平面 PAD ⊥平面 ABCD , PAD ABCD AD=平面 平面 , AB ABCD 平面 ,
AB PAD⊥平面 , 由(1)可知 //EG AB , EG PAD⊥平面 ,
EG EP⊥,又 EP ED⊥ , DE EG E= , PE ⊥ 平面 EGCD . ·······································7 分
1
3P EGCD EGCDV PE S− = .
在四棱锥 P EGCD− 中, EG PAD⊥ 平面 , EG DE⊥ ,
底面 EGCD 为直角梯形,又 底面边长为 2, PAD 是等边三角形,
3DE=, 1 3 3(1 2) 322EGCDS = + = ,又 1PE = ,
1 1 3 3 313 3 2 2P EGCD EGCDV PE S− = = = . ········································································9 分
取 AD 的中点 N ,连接 PN .
PAD 是等边三角形, N 是 AD 中点, NP AD⊥ .
又 平面 PAD ⊥平面 ABCD , PAD ABCD AD=平面 平面 , NP PAD 平面 NP ABCD⊥平面 ,
43
3
113433P ABCD ABCDV PN S− = = = . ······································································11 分
所以
3
32
843
3
P EGCD
P ABCD
V
V
−
−
==,所以被平面 EFC 分成的两部分的体积比为 3
5 . ··································12 分
20.本题考查频率分布直方图,样本数字特征估计总体数字特征等知识;考查学生的阅读理解能力、数据处理能
力和运算求解能力;考查统计与概率思想、化归与转化思想、创新意识和应用意识.满分 12 分.
解:(1)方法一 31个零件序号的中位数为1546 ,所有零件序号的中位数为 1
2
N + , ·····················2 分
依题意得 11546 2
N += ,解得 3091N = . ·············································································3 分
方法二 抽取的31个零件将[0, 1]N + 划分为32个区间,平均长度为 1
32
N + ,
前31个区间的平均长度为 2791
31
, ····················································································5 分
依题意得 1 2791
32 31
N + = ,解得 2880N . ············································································6 分
(2) 抽取的 720 件优等品占总数的 720 1
2880 4= ,依题意得 1(200 200 ) 4P m y m− + = , ···········8 分
由频率分布直方图可知: (190 210) (0.029 0.041) 10 0.7 0.25Py = + = ,故0 10m,
则 (200 200 ) ( 0.029 0.041) 10 0.25P m y m m m− + = + = , ··········································10 分
解得 3m .故优等品的范围为197 203y . ·······································································11 分
因为 205 [197,203] ,所以内径为 205的零件不能作为优等品. ················································12 分
21.本题考查函数的单调性、导数及其应用、不等式等基础知识;考查推理论证能力、运算求解能力;考查数形
结合思想,函数与方程思想、化归与转化思想、分类与整合思想等.满分 12 分.
解:(1) 1
2a = ( ) 21 cos2f x x x = − , ( )' sinf x x x = + , ·················································1 分
法一: (0) 0f = , ·········································································································2 分
当 (0,1]x 时, 0x ,sin 0x , ( ) 0fx,当 (1, )x + 时, ( ) sin 1 sin 0f x x x x = + + .
当 0x 时, ( ) 0fx , 又 ( ) sin ( )f x x x f x− = − − = − , ()fx 是奇函数,
当 0x 时, ( ) 0fx . ·································································································4 分
综上,当 0x 时, ( )'0fx , ( )y f x= 单调递减;当 0x 时, ( )'0fx , ( )y f x= 单调递增;
因此 0x = 为函数 ( )y f x= 的极小值点,无极大值点. ····························································5 分
法二:令 ( ) ( )' sing x f x x x= = + , (0) 0f = ,····································································2 分
则 ( )' 1 cosg x x=+ , cos 1x − ( )' =1 cos 0g x x + ,故 ( )'y f x= 在 R 上单调递增. ················4 分 所以当 0x 时, ( ) ( )' ' 0 0f x f=, ( )y f x= 单调递减;当 0x 时, ( ) ( )' ' 0 0f x f=, ( )y f x= 单调递
增;因此 0x = 为函数 ( )y f x= 的极小值点,无极大值点. ·····················································5 分
(2)当 0x = 时, ( ) 0fx ,故 ( ) 2
cos0 xf x a x= = , 33,22x −
且 0x . ·······················6 分
令 ( ) 2
cos xhx x= ,则 ( ) ( )
2
43
sin 2 cos 1' sin 2cosx x x xh x x x xxx
− − −= = +
,
1当 0, 2x
时, ( )'0hx , ( )y h x= 单调递减,当 0x → , ( )hx→ + , 02h =
;
2 当 ,2x
时,令 ( ) sin 2cosx x x x =+ ,则 ( )' cos sin 0x x x x = − , ( )yx= 单 调 递 减 , 又
022
=
, ( ) 20 = − ,故存在 0 ,2x
使得 ( )0 0x = ,即当 0,2xx
时, ( ) 0x , ( )'0hx ,
( )y h x= 单调递减;当 ( )0 ,xx 时, ( ) 0x , ( )'0hx , ( )y h x= 单调递增;
3 当 3, 2x
时, ( )'0hx , ( )y h x= 单调递增;
综上可知: ( )y h x= 在( )00, x 上单调递减,在 0
3, 2x
上单调递增. ········································9 分
由于 ( )y h x= 为偶函数,只需函数 ( )y h x= 与 ya= 在 3(0, )2
上有两个交点. ( )0h → + , 02h =
,
( )0 0hx , 3 02h =
, 3 02Mh = =
, ( )0N h x= . ·····················································10 分
以下估计 ( )0N h x= 的范围:
法一: 0( ) 0x = , 0 0 0sin 2cos 0x x x + = , 0
0
0
2cos
sin
xx x = − ,
22
0 0 0
002
0 0 0 0
cos sin 1 cos 11( ) ( cos )4cos 4cos 4 cos
x x xh x xx x x x
− = = = = −
3 2 3( ) ( -2) 04 2 4
= , 0
3( , )4x , 0
2cos ( 1, )2x − − .
令 0
2cos ( 1, )2tx= − − ,则 00
0
1 1 1 1( ) ( cos ) ( )4 cos 4N h x x txt= = − = − ,
11()4ytt=−在 2( 1, )2t − − 单调递减, 1 2 2 2( 2 ) ( )4 2 8 2yt − + = − = − ,
0
2() 8N h x = − , 2
8MN − ,结论得证. ·································································12 分
法二: 3 2 3 204 2 4
= −
, 55306 12
= −
, 0
35,46x
, ( ) 0
0 2
0
cos xhx x= ,
0
32cos22x− − ,
2
2
0
3 81 54 16x
, l
x
y
M
N
R O
P
l
x
y
M
N
R O
P
0
2
0
cos22
88
xN x+ = + =
2
00
2
0
8cos 2
8
xx
x
+
2
0
38 2 52
8x
− +
0 , 2
8N − .
2
8M N N − = − ,结论得证. ···························································································· 12 分
22.[选修 44− :坐标系与参数方程]
本题考查曲线的极坐标方程等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能
力;考查数形结合思想、化归与转化思想、分类与整合思想等.满分 10 分.
解:法一:(1)由( )2 211xy− + = 得, 2220x y x+ − = .
因为 2 2 2 , cosx y x = + = ,所以 2cos= ,即为C 的极坐标方程. ·····································2 分
当 P 在 y 轴右侧时,过点 P 作 x 轴的垂线,垂足为 M ,作 y 轴的垂线,垂足为 N ,设l 与 x 轴的交点为 R ,
因为点 P 到原点距离与到l 距离相等,所以 OP PN MR OR OM= = = + .
在 RT△OPM 中, cos cosOM OP ==,所以 2 cos =+ .
因为 0 ,所以 2
1 cos = − .
当 P 在 y 轴或 y 轴左侧时,满足 2
1 cos = − .
综上, P 点轨迹的极坐标方程为 2
1 cos = − . ·····································································5 分
(2)因为 4OP OQ= ,所以设点 ( ) ( )12, , ,PQ ,且 124= . ············································6 分
又 12
2 , 2cos1 cos ==−
,所以 2 8cos1 cos =−
, ··························································8 分
解得 1cos 2 = ,所以
2 411 2
OP ==
− . ················································································10 分
法二:(1)由( )2 211xy− + = 得 2220x y x+ − = .因为 2 2 2 , cosx y x = + = ,
所以 2cos= ,即为C 的极坐标方程. ·············································································2 分
设 ( ),P x y ,因为点 P 到原点距离与到l 距离相等,所以 22 2x y x+ = + ,化简得 2 44yx=+.
因为 cos , sinxy ==,所以 22sin 4 cos 4 =+.
因为 22sin 1 cos=− ,所以 ( )22 cos 2 =+.因为 1x − ,所以 cos 2 0+,
所以 cos 2 =+,化简得 2
1 cos = −
,即为 P 点轨迹的极坐标方程 ···································5 分
(2)由已知得直线 PQ 的斜率存在,设点 ( ) ( )1 1 2 2, , ,P x y Q x y , PQ 的斜率为 k ,
由 2
,
44
y kx
yx
=
=+
,解得
2
1 2
2 2 1 kx k
+= . ·············································································6 分 由 22
,
20
y kx
x y x
=
+ − =
,解得 2 2
2
1x k= + . ···············································································7 分
由 4OP OQ= ,得( ) ( )1 1 2 2, 4 ,x y x y= ,所以 124xx= ,所以 1 0x ,
所以
2
22
2 2 1 84 1
k
kk
++= +
,即
2
22
1 1 16
1
k
kk
++ = +
, ·························································8 分
令 21tk=+,则 22
1 16
1
t
tt
+ =−
,解得 2 4t = ,所以 2 3k = .所以 22
114OP x y= + = . ························10 分
法三:(1)同解法二.
(2)因为 4OP OQ= ,所以设点 ( ) ( )12, , ,PQ ,且 124= . ············································6 分
又 22
1 1 2sin 4 cos 4, 2cos = + = ,所以( ) ( )2 28cos sin 4 8cos cos 4 =+, ····················8 分
化简得 4216cos 8cos 1 0− + = ,即 2 1cos 4 = ,因为 2 0 ,所以 1cos 2 = .
所以
2 411 2
OP ==
− . ······································································································10 分
23.[选修 45− :不等式选讲]
本题考查基本不等式、含绝对值不等式等基础知识;考查推理论证能力、运算求解能力等;考查数形结合、
转化与化归、函数与方程、分类与整合等数学思想方法.满分 10 分.
解:(1)由已知得, ( )01f a b c a b c= + + − = + + = ·······························································1 分
所以( )2 2 2 2 2 2 2a b c a b c ab bc ac+ + = + + + + + ···································································2 分
( ) ( ) ( )2 2 2 2 2 21 2 2 22 a b b c a c ab bc ac= + + + + + + + + ··························································3 分
( )1 2 2 2 2 2 22 ab bc ac ab bc ac + + + + + ( )3 ab bc ac= + + , ····················································4 分
所以 1
3ab bc ac+ + . ·····································································································5 分
(2)法一:当 1ab==时, ( ) 21f x x x c= + + + ·······························································6 分
因为对于任意的 ( ,1x − − , ( ) 4fx 恒成立,
所以 ( )1 1 4fc− = − + ,解得 3c − 或 5c . ·····································································7 分
①当 3c − 时, ( ) ( )2 1 3 2f x x x c x c= + + + = − + + 在 ( ,1x − − 为减函数,
所以 ( ) ( )min 1 1 4f x f c= − = − ,即 3c − .·········································································8 分
②当 5c 时, ( ) ( )
2 , 1,
21 3 2 ,
x c c x
f x x x c x c x c
− − + − −= + + + = − + + −
在 ( ,1x − − 为减函数,
所以 ( ) ( )min 1 1 4f x f c= − = − ,即 5c ,所以 5c . ···························································9 分
综上所述, 3c − 或 5c . ·······························································································10 分 x
y
-2-3
h(x)=2x+6
g(x)=x+c
O
法二:当 1ab==时, ( ) 21f x x x c= + + + , ···································································6 分
因为对于任意的 ( ,1x − − , ( ) 4fx 恒成立,
所以 ( ) ( )2 1 4f x x x c= − + + + ,即 26x c x+ + 对于任意 ( ,1x − − 恒成立. ·······················7 分
当 3x − 时, 2 6 0x +,所以 26x c x+ + 对于任意 ( ,3x − − 恒成立,所以 Rc . ···············8 分
当 31x− − 时, 2 6 0x +, 26x c x+ + 对于任意 ( 3, 1x − − 恒成立,
可化为 ( )223 2 24 36 0x c x c− − + − 对于任意 ( 3, 1x − − 恒成立,
则 ( ) ( )( )
( ) ( )( )
2 2
2 2
3 3 2 24 3 36 0,
3 1 2 24 1 36 0
cc
cc
− − − − + −
− − − − + −
,即 ( )
2
2
2 15 0,
30
cc
c
− − −
,解得 3c − 或 5c . ····················9 分
综上所述, 3c − 或 5c . ·······························································································10 分