福建省厦门市2020届高三毕业班第一次质量检查数学(文科)试题word+答案 2份打包-
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
厦门市 2020 届高中毕业班第一次质量检查参考答案 文科数学 一、选择题: CADAC DCACB CB 二、填空题: 13. 2− 14.1 15. 6 3 16. 67 ,10 3 2 21− 三、解答题: 17.本题主要考查等差、等比数列的定义,考查分组求和法、等比数列的求和运算以及对数运算;考查运算求解 能力;考查化归与转化思想等.满分 12 分. 解:(1)因为1, na , +1na 成等差数列,所以 121nnaa+=+, ······················································1 分 当 1n = 时,有 122 1=6aa=+ ,得 1 3a = ,···········································································2 分 所以 +1 1 2( 1)nnaa− = − ,又 1 12a −= ,所以 1 1 21 n n a a + − =− , 所以 1na − 是首项为 2 ,公比为 2 的等比数列. ····································································5 分 (2)由(1)知 1na − 是首项为 2 ,公比为 2 的等比数列, 所以 11 2 2 2nn na −− =  = ,所以 21n na =+. ········································································6 分 所以 1 2 3(2 1) (2 1) (2 1) (2 1)n nS = + + + + + + + + ··································································7 分 1 2 3(2 2 2 2 )n n= + + + + + 2(1 2 ) 12 n n−=+− 122n n+= + − , ······················································9 分 所以 2log 10nS  即 1 102 2 2n n+ + −  , ················································································10 分 因为 1(2 2) [2 ( 1) 2] 2 1 0n n nnn+ + − − + − − = +  ,所以数列 1{2 2}n n+ +− 为递增数列. 当 9n = 时, 10 102 9 2 2+ −  ,不满足,当 8n = 时, 9 102 8 2 2+ −  满足. 所以满足不等式 2log 10nS  的最大的正整数 n 的值为8 . ······················································12 分 18.本题考查直线的方程、抛物线的定义及轨迹方程、直线与圆锥曲线的关系等知识;考查运算求解能力、推 理论证能力等;考查数形结合思想、函数与方程思想、化归与转化思想等.满分 12 分. 解:(1)法一:依题意:平面内动点 E 到定点 F (0,1) 和到定直线 1y =− 的距离相等, ····················1 分 根据抛物线的定义,曲线C 是以点 F 为焦点,直线 1y =− 为准线的抛物线, 其方程为 2 4xy= . ········································································································3 分 法二:设点 E ( , )xy,依题意有: 1EF y=+, ·································································1 分 即 22( 1) 1x y y+ − = + ,化简得到C 的方程为 2 4xy= . ························································3 分 (2)法一:依题意可设直线l 的方程为: 1y kx=+, A 11( , )xy, B 22( , )xy, 0( , 1)Qx − . 联立 2 1 4 y kx xy =+ = ,得 2 4 4 0x kx− − = ,得 124x x k+= , 12 4xx =− ·············································5 分 由 1228AB y y= + + = ,得 2 1 2 1 2( ) 2 4 2 6y y k x x k+ = + + = + = , 所以 2 1k = ,即 1k = ,又由 0k  ,得 1k = , ··································································7 分 故: 124xx+=, 12 4xx = − , 126yy+=, 121yy=. 1 0 1( , 1)QA x x y= − + , 2 0 2( , 1)QB x x y= − + , 2 1 2 1 2 0 0 1 2 1 2( ) 1QA QB x x x x x x y y y y = − + + + + + + , 化简得: 2 004 3 0xx− + = ,解得 0 1x = 或3 ,即 (1, 1)Q − 或 (3, 1)Q − . ··········································10 分 当Q 为 (1, 1)− 时,点Q 到直线l 的距离为 |1 1 1| 3 2 22 ++ = , 1 3 28 6 222QABS =   = ; 当Q 为 (3, 1)− 时,点Q 到直线l 的距离为 |3 1 1| 5 2 22 ++ = , 1 5 28 10 222QABS =   = . ···············12 分 法二:依题意可设直线l 的方程为: 1y kx=+. A 11( , )xy, B 22( , )xy, 0( , 1)Qx − . 联立 2 1 4 y kx xy =+ = ,得 2 4 4 0x kx− − = ,得 124x x k+= , 12 4xx =− , ··········································5 分 由 1228AB y y= + + = ,得 2 1 2 1 2( ) 2 4 2 6y y k x x k+ = + + = + = , 所以 2 1k = ,即 1k = ,又由 0k  ,得 1k = , ··································································7 分 解得 (2 2 2,3 2 2)A −−, (2 2 2,3 2 2)B ++, 故而: 0(2 2 2 ,4 2 2)QA x= − − − , 0(2 2 2 ,4 2 2)QB x= + − + , 22 0 0 0 04 8 4 16 8 4 4 1QA QB x x x x = − + − + − = − + = ,解得 0 1x = 或3 , 得 (1, 1)Q − 或 (3, 1)Q − . ·····································································································10 分 当Q 为 (1, 1)− 时,点Q 到直线l 的距离为 |1 1 1| 3 2 22 ++ = , 1 3 28 6 222QABS =   = ; 当Q 为 (3, 1)− 时,点Q 到直线l 的距离为 |3 1 1| 5 2 22 ++ = , 1 5 28 10 222QABS =   = . ···············12 分 19. 本题考查直线与平面平行和直线与平面垂直、体积等基础知识;考查空间想象能力、运算求解能力、推理 论证能力;考查数形结合思想、化归与转化思想等.满分 12 分. 证明:(1)法一:如图,取 PB 的中点G ,连接GC , EG . E 是 PA的中点, //EG AB ,且 1 2EG AB= , 又 正方形 ABCD , //AB CD , AB CD= , //EG CD ,且 1 2EG CD= . F 是CD 的中点, 1 2FC CD= , //FC EG 且 FC EG= , 四边形 EGCF 是平行四边形, //EF GC , ····································································2 分 又 GC PBC 平面 , EF PBC 平面 , //EF PBC 平面 . ·················································· 4 分 法二:如图,连接 AF 并延长,交 BC 的延长线于 H 点. //FC AB 且 F 是CD 的中点, 1 2 HF FC AH AB = = , F 是 AH 的中点, E 是 AP 的中点, //EF PH . ·······················································································2 分 H BC , PH PBC平面 ,又 EF PBC 平面 , //EF PBC 平面 . ································4 分 法三:如图,取 AB 中点 M ,连接 EM , FM . ,EM分别是 ,AP AB 的中点, //EM PB , 又 EM PBC 平面 , PB PBC 平面 , //EM PBC 平面 . ,FM分别是 ,CD AB的中点, //FC MB ,且 FC BM= , 四边形 BMFC 是平行四边形, //MF BC , 又 FM PBC 平面 , BC PBC 平面 , //MF PBC 平面 . ···············································3 分 又 EM MF M= , //EFM PBC平面 平面 . EF EFM 平面 , //EF PBC 平面 . ············································································4 分 解:(2)如图,取 PB 的中点G ,由(1)可知, //EG CD ,所以过 ,,E F C 的平面即为平面 EGCD . ·····5 分 PAD 是等边三角形, E 是 AP 中点, EP ED⊥ . 在正方形 ABCD 中, AB AD⊥ , 平面 PAD ⊥平面 ABCD , PAD ABCD AD=平面 平面 , AB ABCD 平面 , AB PAD⊥平面 , 由(1)可知 //EG AB , EG PAD⊥平面 , EG EP⊥,又 EP ED⊥ , DE EG E= , PE ⊥ 平面 EGCD . ·······································7 分 1 3P EGCD EGCDV PE S− =  . 在四棱锥 P EGCD− 中, EG PAD⊥ 平面 , EG DE⊥ , 底面 EGCD 为直角梯形,又 底面边长为 2, PAD 是等边三角形, 3DE=, 1 3 3(1 2) 322EGCDS =  +  = ,又 1PE = , 1 1 3 3 313 3 2 2P EGCD EGCDV PE S− =  =   = . ········································································9 分 取 AD 的中点 N ,连接 PN . PAD 是等边三角形, N 是 AD 中点, NP AD⊥ . 又 平面 PAD ⊥平面 ABCD , PAD ABCD AD=平面 平面 , NP PAD 平面 NP ABCD⊥平面 , 43 3 113433P ABCD ABCDV PN S− =   =   = . ······································································11 分 所以 3 32 843 3 P EGCD P ABCD V V − − ==,所以被平面 EFC 分成的两部分的体积比为 3 5 . ··································12 分 20.本题考查频率分布直方图,样本数字特征估计总体数字特征等知识;考查学生的阅读理解能力、数据处理能 力和运算求解能力;考查统计与概率思想、化归与转化思想、创新意识和应用意识.满分 12 分. 解:(1)方法一 31个零件序号的中位数为1546 ,所有零件序号的中位数为 1 2 N + , ·····················2 分 依题意得 11546 2 N += ,解得 3091N = . ·············································································3 分 方法二 抽取的31个零件将[0, 1]N + 划分为32个区间,平均长度为 1 32 N + , 前31个区间的平均长度为 2791 31 , ····················································································5 分 依题意得 1 2791 32 31 N + = ,解得 2880N  . ············································································6 分 (2) 抽取的 720 件优等品占总数的 720 1 2880 4= ,依题意得 1(200 200 ) 4P m y m−   + = , ···········8 分 由频率分布直方图可知: (190 210) (0.029 0.041) 10 0.7 0.25Py  = +  =  ,故0 10m, 则 (200 200 ) ( 0.029 0.041) 10 0.25P m y m m m−   + =  +   = , ··········································10 分 解得 3m  .故优等品的范围为197 203y . ·······································································11 分 因为 205 [197,203] ,所以内径为 205的零件不能作为优等品. ················································12 分 21.本题考查函数的单调性、导数及其应用、不等式等基础知识;考查推理论证能力、运算求解能力;考查数形 结合思想,函数与方程思想、化归与转化思想、分类与整合思想等.满分 12 分. 解:(1) 1 2a = ( ) 21 cos2f x x x = − , ( )' sinf x x x = + , ·················································1 分 法一: (0) 0f  = , ·········································································································2 分 当 (0,1]x 时, 0x  ,sin 0x  , ( ) 0fx,当 (1, )x + 时, ( ) sin 1 sin 0f x x x x = +  +  . 当 0x  时, ( ) 0fx  , 又 ( ) sin ( )f x x x f x− = − − = − , ()fx 是奇函数, 当 0x  时, ( ) 0fx  . ·································································································4 分 综上,当 0x  时, ( )'0fx , ( )y f x= 单调递减;当 0x  时, ( )'0fx , ( )y f x= 单调递增; 因此 0x = 为函数 ( )y f x= 的极小值点,无极大值点. ····························································5 分 法二:令 ( ) ( )' sing x f x x x= = + , (0) 0f  = ,····································································2 分 则 ( )' 1 cosg x x=+ , cos 1x − ( )' =1 cos 0g x x +  ,故 ( )'y f x= 在 R 上单调递增. ················4 分 所以当 0x  时, ( ) ( )' ' 0 0f x f=, ( )y f x= 单调递减;当 0x  时, ( ) ( )' ' 0 0f x f=, ( )y f x= 单调递 增;因此 0x = 为函数 ( )y f x= 的极小值点,无极大值点. ·····················································5 分 (2)当 0x = 时, ( ) 0fx ,故 ( ) 2 cos0 xf x a x=  = , 33,22x − 且 0x  . ·······················6 分 令 ( ) 2 cos xhx x= ,则 ( ) ( ) 2 43 sin 2 cos 1' sin 2cosx x x xh x x x xxx − − −= = + , 1当 0, 2x  时, ( )'0hx , ( )y h x= 单调递减,当 0x → , ( )hx→ + , 02h = ; 2 当 ,2x   时,令 ( ) sin 2cosx x x x =+ ,则 ( )' cos sin 0x x x x = −  , ( )yx= 单 调 递 减 , 又 022  = , ( ) 20 = −  ,故存在 0 ,2x   使得 ( )0 0x = ,即当 0,2xx 时, ( ) 0x  , ( )'0hx , ( )y h x= 单调递减;当 ( )0 ,xx 时, ( ) 0x  , ( )'0hx , ( )y h x= 单调递增; 3 当 3, 2x  时, ( )'0hx , ( )y h x= 单调递增; 综上可知: ( )y h x= 在( )00, x 上单调递减,在 0 3, 2x   上单调递增. ········································9 分 由于 ( )y h x= 为偶函数,只需函数 ( )y h x= 与 ya= 在 3(0, )2  上有两个交点. ( )0h → + , 02h = , ( )0 0hx  , 3 02h = , 3 02Mh = = , ( )0N h x= . ·····················································10 分 以下估计 ( )0N h x= 的范围: 法一: 0( ) 0x = , 0 0 0sin 2cos 0x x x + = , 0 0 0 2cos sin xx x = − , 22 0 0 0 002 0 0 0 0 cos sin 1 cos 11( ) ( cos )4cos 4cos 4 cos x x xh x xx x x x − = = = = − 3 2 3( ) ( -2) 04 2 4  =   , 0 3( , )4x   , 0 2cos ( 1, )2x  − − . 令 0 2cos ( 1, )2tx=  − − ,则 00 0 1 1 1 1( ) ( cos ) ( )4 cos 4N h x x txt= = − = − , 11()4ytt=−在 2( 1, )2t  − − 单调递减, 1 2 2 2( 2 ) ( )4 2 8 2yt  − + = − = − , 0 2() 8N h x =  − , 2 8MN −  ,结论得证. ·································································12 分 法二: 3 2 3 204 2 4     =  −        , 55306 12  = −  , 0 35,46x  , ( ) 0 0 2 0 cos xhx x= , 0 32cos22x−   − , 2 2 0 3 81 54 16x    , l x y M N R O P l x y M N R O P 0 2 0 cos22 88 xN x+ = + = 2 00 2 0 8cos 2 8 xx x +  2 0 38 2 52 8x  − +   0 , 2 8N  − . 2 8M N N − = −  ,结论得证. ···························································································· 12 分 22.[选修 44− :坐标系与参数方程] 本题考查曲线的极坐标方程等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能 力;考查数形结合思想、化归与转化思想、分类与整合思想等.满分 10 分. 解:法一:(1)由( )2 211xy− + = 得, 2220x y x+ − = . 因为 2 2 2 , cosx y x  = + = ,所以 2cos= ,即为C 的极坐标方程. ·····································2 分 当 P 在 y 轴右侧时,过点 P 作 x 轴的垂线,垂足为 M ,作 y 轴的垂线,垂足为 N ,设l 与 x 轴的交点为 R , 因为点 P 到原点距离与到l 距离相等,所以 OP PN MR OR OM= = = + . 在 RT△OPM 中, cos cosOM OP   ==,所以 2 cos  =+ . 因为 0  ,所以 2 1 cos = − . 当 P 在 y 轴或 y 轴左侧时,满足 2 1 cos = − . 综上, P 点轨迹的极坐标方程为 2 1 cos = − . ·····································································5 分 (2)因为 4OP OQ= ,所以设点 ( ) ( )12, , ,PQ    ,且 124= . ············································6 分 又 12 2 , 2cos1 cos  ==− ,所以 2 8cos1 cos  =− , ··························································8 分 解得 1cos 2 = ,所以 2 411 2 OP == − . ················································································10 分 法二:(1)由( )2 211xy− + = 得 2220x y x+ − = .因为 2 2 2 , cosx y x  = + = , 所以 2cos= ,即为C 的极坐标方程. ·············································································2 分 设 ( ),P x y ,因为点 P 到原点距离与到l 距离相等,所以 22 2x y x+ = + ,化简得 2 44yx=+. 因为 cos , sinxy   ==,所以 22sin 4 cos 4   =+. 因为 22sin 1 cos=− ,所以 ( )22 cos 2  =+.因为 1x − ,所以 cos 2 0+, 所以 cos 2  =+,化简得 2 1 cos = − ,即为 P 点轨迹的极坐标方程 ···································5 分 (2)由已知得直线 PQ 的斜率存在,设点 ( ) ( )1 1 2 2, , ,P x y Q x y , PQ 的斜率为 k , 由 2 , 44 y kx yx =  =+ ,解得 2 1 2 2 2 1 kx k += . ·············································································6 分 由 22 , 20 y kx x y x =  + − = ,解得 2 2 2 1x k= + . ···············································································7 分 由 4OP OQ= ,得( ) ( )1 1 2 2, 4 ,x y x y= ,所以 124xx= ,所以 1 0x  , 所以 2 22 2 2 1 84 1 k kk ++= + ,即 2 22 1 1 16 1 k kk ++ = + , ·························································8 分 令 21tk=+,则 22 1 16 1 t tt + =− ,解得 2 4t = ,所以 2 3k = .所以 22 114OP x y= + = . ························10 分 法三:(1)同解法二. (2)因为 4OP OQ= ,所以设点 ( ) ( )12, , ,PQ    ,且 124= . ············································6 分 又 22 1 1 2sin 4 cos 4, 2cos     = + = ,所以( ) ( )2 28cos sin 4 8cos cos 4   =+, ····················8 分 化简得 4216cos 8cos 1 0− + = ,即 2 1cos 4 = ,因为 2 0  ,所以 1cos 2 = . 所以 2 411 2 OP == − . ······································································································10 分 23.[选修 45− :不等式选讲] 本题考查基本不等式、含绝对值不等式等基础知识;考查推理论证能力、运算求解能力等;考查数形结合、 转化与化归、函数与方程、分类与整合等数学思想方法.满分 10 分. 解:(1)由已知得, ( )01f a b c a b c= + + − = + + = ·······························································1 分 所以( )2 2 2 2 2 2 2a b c a b c ab bc ac+ + = + + + + + ···································································2 分 ( ) ( ) ( )2 2 2 2 2 21 2 2 22 a b b c a c ab bc ac= + + + + + + + + ··························································3 分 ( )1 2 2 2 2 2 22 ab bc ac ab bc ac + + + + + ( )3 ab bc ac= + + , ····················································4 分 所以 1 3ab bc ac+ +  . ·····································································································5 分 (2)法一:当 1ab==时, ( ) 21f x x x c= + + + ·······························································6 分 因为对于任意的 ( ,1x − − , ( ) 4fx 恒成立, 所以 ( )1 1 4fc− = − +  ,解得 3c − 或 5c  . ·····································································7 分 ①当 3c − 时, ( ) ( )2 1 3 2f x x x c x c= + + + = − + + 在 ( ,1x − − 为减函数, 所以 ( ) ( )min 1 1 4f x f c= − = −  ,即 3c − .·········································································8 分 ②当 5c  时, ( ) ( ) 2 , 1, 21 3 2 , x c c x f x x x c x c x c − − + −   −= + + + = − + +  − 在 ( ,1x − − 为减函数, 所以 ( ) ( )min 1 1 4f x f c= − = −  ,即 5c  ,所以 5c  . ···························································9 分 综上所述, 3c − 或 5c  . ·······························································································10 分 x y -2-3 h(x)=2x+6 g(x)=x+c O 法二:当 1ab==时, ( ) 21f x x x c= + + + , ···································································6 分 因为对于任意的 ( ,1x − − , ( ) 4fx 恒成立, 所以 ( ) ( )2 1 4f x x x c= − + + +  ,即 26x c x+  + 对于任意 ( ,1x − − 恒成立. ·······················7 分 当 3x − 时, 2 6 0x +,所以 26x c x+  + 对于任意 ( ,3x − − 恒成立,所以 Rc . ···············8 分 当 31x−   − 时, 2 6 0x +, 26x c x+  + 对于任意 ( 3, 1x − − 恒成立, 可化为 ( )223 2 24 36 0x c x c− − + −  对于任意 ( 3, 1x − − 恒成立, 则 ( ) ( )( ) ( ) ( )( ) 2 2 2 2 3 3 2 24 3 36 0, 3 1 2 24 1 36 0 cc cc  − − − − + −  − − − − + −  ,即 ( ) 2 2 2 15 0, 30 cc c  − −  − ,解得 3c − 或 5c  . ····················9 分 综上所述, 3c − 或 5c  . ·······························································································10 分

资料: 1.9万

进入主页

人气:

10000+的老师在这里下载备课资料