理科数学2010-2018高考真题分类训练专题四三角函数与解三角形第十一讲三角函数的综合应用答案
加入VIP免费下载

本文件来自资料包: 《理科数学2010-2018高考真题分类训练专题四三角函数与解三角形第十一讲三角函数的综合应用答案》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
天添资源网 http://www.ttzyw.com/‎ 专题四 三角函数与解三角形 第十一讲 三角函数的综合应用 答案部分 ‎2019年 ‎1.解析 解法一:‎ ‎(1)过A作,垂足为E.‎ 由已知条件得,四边形ACDE为矩形,.'‎ 因为PB⊥AB,‎ 所以.‎ 所以.‎ 因此道路PB的长为15(百米).‎ ‎(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.‎ ‎②若Q在D处,联结AD,由(1)知,‎ 从而,所以∠BAD为锐角.‎ 所以线段AD上存在点到点O的距离小于圆O的半径.‎ 因此,Q选在D处也不满足规划要求.‎ 综上,P和Q均不能选在D处.‎ ‎(3)先讨论点P的位置.‎ 当∠OBP90°时,在中,.‎ 由上可知,d≥15.‎ 再讨论点Q的位置.‎ 由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径.‎ 综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+.‎ 因此,d最小时,P,Q两点间的距离为17+(百米).‎ 解法二:(1)如图,过O作OH⊥l,垂足为H.‎ 以O为坐标原点,直线OH为y轴,建立平面直角坐标系.‎ 因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.‎ 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.‎ 从而A(4,3),B(−4,−3),直线AB的斜率为.‎ 因为PB⊥AB,所以直线PB的斜率为,‎ 直线PB的方程为.‎ 所以P(−13,9),.‎ 因此道路PB的长为15(百米).‎ 天添资源网 http://www.ttzyw.com/‎ 天添资源网 http://www.ttzyw.com/‎ ‎(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料