2020年全国I卷高考文科数学考前适应性试卷(一)(Word版附答案)
加入VIP免费下载

2020年全国I卷高考文科数学考前适应性试卷(一)(Word版附答案)

ID:273316

大小:505.51 KB

页数:12页

时间:2020-07-01

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2020 年全国 I 卷高考考前适应性试卷 文 科 数 学(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形 码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂 黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草 稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1.函数 的零点是( ) A. , B. , C. D. 2.已知集合 ,且 ,则实数 的取值范围是( ) A. B. C. D. 3.设 是两条不同直线, 、 是两个不同平面,则下列命题中错误的是( ) A.若 , ,则 B.若 , ,则 C.若 , ,则 D.若 , ,则 4.计算 的值为( ) A. B. C. D. 5.等差数列 的首项为 23,公差是整数,从第 7 项开始为负值,则公差为( ) A. B. C. D. 6.已知函数 的一部分图象如图所示,如果 , , ,则( ) A. B. C. D. 7.已知 , , , ,则锐角 等于( ) A.30° B.75° C.60° D.45° 8.某企业三月中旬生产 A、B、C 三种产品共 3000 件,根据分层抽样的结果,企业统计员制作了如 下的统计表格: 产品类别 A B C 产品数量(件) 1300 样本容量(件) 130 由于不小心,表格中 A、C 产品的有关数据已被污染看不清楚,统计员记得 A 产品的样本容量比 C 产品的样本容量多 10,根据以上信息,可得 C 的产品数量是( ) A.800 B.700 C.600 D.900 9.某个几何体的三视图如图所示,根据图中标出的长度,那么这个几何体的体积是( ) A. B. C. D. 10.已知某程序框图如图所示,则该程序运行后输出的结果为( ) A.0.6 B.0.4 C.0.2 D.0.8 432 ++−= xxy 1 4− 1− 4 1− 4 2{ | 2 0}A x x x a= − + > 1 A∉ a ( ,1]−∞ [1, )+∞ [0, )+∞ ( ,1)−∞ ,a b α β a α⊥ a β⊥ //α β a α∥ b α⊂ //a b a α⊂ b α⊥ a b⊥ a α⊥ b α⊥ //a b ( )21 2i 1 i2 + − + 2 i− 2 3i+ 1 3i2 + 1 i2 − { }na 5− 4− 3− 2− sin( )y A x Bω ϕ= + + 0A > 0ω > π 2 ϕ < 4A = 1ω = π 6 ϕ = 4B = (1,2 sin )x= +a (2,cos )x=b ( 1,2)= −c ( )− ∥a c b x 3 2 2 3 3 3 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号 11.如图,定圆半径为 ,圆心为 ,则直线 与直线 的交点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 12.过抛物线 的焦点 作直线 交抛物线于 , 两点,若 ,则直线 的倾斜角 等于( ) A. B. C. D. 第Ⅱ卷 二、填空题:本大题共 4 小题,每小题 5 分. 13.函数 在 处的导数是________. 14.若函数 ,且 的图象经过点 ,则 _________. 15.如图所示,直线 与双曲线 的渐近线交于 , 两点,记 , .任取双曲线 上的点 ,若 ( 、 ),则 、 满足的一个等式 是 . 16.已知圆 , , 是三个两两垂直的平面与球 的球面的交线,其半径分别为 , , , 且圆 , , 的公共点 在球面上,则球的表面积为 . 三 、 解 答 题 : 本 大 题 共 6 个 大 题 , 共 70 分 , 解 答 应 写 出 文 字 说 明 、 证 明 过 程 或 演 算 步 骤. 17.(12 分)在 中, , , . (1)求 的值; (2)求 的值. 18.(12 分)某幼儿园在“六·一儿童节"开展了一次亲子活动,此次活动由宝宝和父母之一(后面以 家长代称)共同完成,幼儿园提供了两种游戏方案:方案一宝宝和家长同时各抛掷一枚质地均匀的 正方体骰子(六个面的点数分别是 1,2,3,4,5,6),宝宝所得点数记为 ,家长所得点数记为 ;方案二宝宝和家长同时按下自己手中一个计算器的按钮(此计算器只能产生区间 的随机实 数),宝宝的计算器产生的随机实数记为 ,家长的计算器产生的随机实数记为 . (1)在方案一中,若 ,则奖励宝宝一朵小红花,求抛掷一次后宝宝得到一朵小红花的概 率; (2)在方案二中,若 ,则奖励宝宝一本兴趣读物,求按下一次按钮后宝宝得到一本兴趣读 物的概率. a ( , )b c 0ax by c+ + = 1 0x y− + = 2 4y x= F l A B 1 1 1 | | | | 2AF BF − = l π(0 )2 θ θ< < π 2 π 3 π 4 π 6 )1()1( 2 −+= xxy 1=x ( ) ( 0xf x a a= > 1)a ≠ ( , )a a ( )f x = 2=x 2 2: 14 xC y− = 1E 2E C P a b∈R a b 1O 2O 3O O 1 1 2 1O 2O 3O P ABC△ 5BC = 3AC = 4cos2 cos2 3A C− = AB πsin(2 )4A− x y [1,6] m n 1 2x y+ = 2m n> 1 1OE = e 2 2OE = e 1 2OP a b= +e e19.(12 分)如图,四棱锥 中,底面 是菱形, , , 是 的中点,点 在侧棱 上. (1)求证: 平面 ; (2)若 是 PC 的中点,求证: 平面 ; (3)若 ,试求 的值. 20.(12 分)如图,已知椭圆 上两定点 , ,直线 与椭 圆相交于 A、B 两点(异于 P、Q 两点). (1)求证: 为定值; (2)当 时,求 A、P、B、Q 四点围成的四边形面积的最大值. 21.(12 分)已知函数 ( 为实常数). (1)若 ,求证:函数 在 上是增函数; (2)求函数 在 上的最小值及相应的 值; (3)若存在 ,使得 成立,求实数 的取值范围. P ABCD− ABCD PA PD= 60BAD∠ = ° E AD Q PC AD ⊥ PBE Q PA∥ BDQ 2P BCDE Q ABCDV V− −= CP CQ 2 2 14 3 + =x y ( 2,0)P − 3(1, )2Q 1: 2 = − +l y x m PA QBk k+ ( 1,2)m∈ − 2( ) lnf x a x x= + a 2a = − ( )f x (1, )+∞ ( )f x [1, ]e x [1, ]x e∈ ( ) ( 2)f x a x≤ + a请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10 分)【选修 4-4:坐标系与参数方程】 在极坐标系中,已知点 到直线 的距离为 3. (1)求实数 的值; (2)设 是直线 上的动点, 在线段 上,且满足 ,求点 的轨迹方程,并指 出轨迹是什么图形. 23.(10 分)【选修 4-5:不等式选讲】 已知 定义在区间 上,设 , 且 . (1)求证: ; (2)若 ,求证: . ( 2,0)A π: sin( ) ( 0)4l m mρ θ − = > m P l Q OP | | | | 1OP OQ⋅ = Q 2( ) 1f x x= + [ 1,1]− 1x 2 [ 1,1]x ∈ − 1 2x x≠ 1 2 1 2( ) ( )f x f x x x− ≤ − 2 2 1a b+ = ( ) ( ) 6f a f b+ ≤2020 年全国 I 卷高考考前适应性试卷 文 科 数 学(一)答 案 第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.【答案】B 【解析】 ,得 或 . 2.【答案】A 【解析】可知 , 而 , ,那么 ,则 . 3.【答案】B 【解析】对于 , , 与 还可能异面. 4.【答案】D 【解析】 . 5.【答案】B 【解析】可得 ,第 7 项开始为负值,说明 ,且 , 得 , , 又公差是整数,所以公差为 . 6.【答案】C 【解析】易知 , ,由图象知 ,那么 , 又 ,那么 ,那么 A、B、D 错误. 7.【答案】D 【解析】 , ,则 ,则锐角 等于 45°. 8.【答案】A 【解析】设 C 产品的样本容量为 ,则 A 产品的样本容量为 ,由 B 知抽取的比例为 0432 =++−= xxy 1−=x 4=x 2{ 2 0}A x x x a= − + ≤ 1 A∉ 1 A∈ 21 2 0a− + ≤ 1a ≤ a α∥ b α⊂ a b ( )21 2i 1 11 i i 2i i2 2 2 + − + = + − = − 23 ( 1)na n d= + − 6 0a ≥ 7 0a < 5 23 0d + ≥ 6 23 0d + < 4− 2A = 2B = 5π π π 4 12 6 4 T = − = πT = 2πT ω= 2ω = (2,sin )x− =a c ( )− ∥a c b 2cos 2sin 0x x− = x x 10 x+, 故 ,故 ,所以 C 产品的数量为 800. 9.【答案】D 【解析】该几何体是一个三棱锥,底面积为 ,高为 1, 则这个几何体的体积是 . 10.【答案】C 【解析】第一次循环, , ; 第二次循环, , ; 第三次循环, , ; 第四次循环, , ; 第五次循环, , ; 第六次循环, , ; 第七次循环, , ; 第八次循环, , ; … 依次可得第 2011 次循环, , ; 第 2012 次循环, , .知输出 . 11.【答案】C 【解析】易知 , ,而圆与 轴有两个交点,则 , 又圆与 轴没有交点,则 ,则 , 可以解出两直线的交点为 , ,则 ,则 ,同理得 , , 那么可得 , ,那么交点在第三象限. 12.【答案】B 【解析】设直线 的斜率为 ,则 的方程为 , 1 10 10 130 300x x+ + + = 80x = 1 2 3 32 × × = 1 33 13 3 × × = 0.4A = 2n = 0.8A = 3n = 0.6A = 4n = 0.2A = 5n = 0.4A = 6n = 0.8A = 7n = 0.6A = 8n = 0.2A = 9n = 0.6A = 2012n = 0.2A = 2013n = 0.2A = 0b < 0c > x 0a c> > y a b< 0 c a b< < < ( , )b c a c a b a b + −− + + a b< a b< − 0a b+ < 0b c+ < 0a c− > 0b c a b +− ( )f x (1, )+∞ 22( ) ( 0)x af x xx +′ = > [1, ]x e∈ 2 22 [ 2, 2 ]x a a a e+ ∈ + + 2a ≥ − ( )f x′ [1, ]e 2a = − 1x = ( ) 0f x′ = ( )f x [1, ]e min( ) (1) 1f x f= = 22 2e a− < < − 2 ax −= ( ) 0f x′ = 1 2 ax −≤ < ( ) 0f x′ < ( )f x 2 a x e − < ≤ ( ) 0f x′ > ( )f x min( ) ( ) ln( )2 2 2 2 a a a af x f −= = − − 22a e≤ − ( )f x′ [1, ]e 22a e= − x e= ( ) 0f x′ =故函数 在 上是减函数,此时 , 综上可知,当 时, 的最小值为 1,相应的 值为 1; 当 时, 的最小值为 ,相应的 值为 ; 当 时, 的最小值为 ,相应的 值为 . (3)不等式 化为 , ∵ ,∴ 且等号不能同时取到, 所以 ,即 ,因而 ( ), 令 ( ),则 , 当 时, , , , 从而 (仅当 时取等号),所以 在 上为增函数, 故 的最小值为 ,所以 的取值范围是 . 22.【答案】(1) ;(2) ,点 的轨迹是一个圆. 【解析】(1)以极点为原点,极轴为 轴的正半轴,建立直角坐标系, 则点 的直角坐标为 ,直线 的直角坐标方程为 , 由点 到直线 的距离为 ,∴ . (2)由(1)得直线 的方程为 , 设 , ,则 ,① 因为点 在直线 上,所以 ,② 将①代入②,得 ,则点 的轨迹方程为 . ( )f x [1, ]e 2 min( ) ( )f x f e a e= = + 2a ≥ − ( )f x x 22 2e a− < < − ( )f x ln( )2 2 2 a a a− − x 2 a− 22a e≤ − ( )f x 2a e+ x e ( ) ( 2)f x a x≤ + 2( ln ) 2a x x x x− ≥ − [1, ]x e∈ ln 1x x≤ ≤ ln x x< ln 0x x− > 2 2 ln x xa x x −≥ − [1, ]x e∈ 2 2( ) ln x xg x x x −= − [1, ]x e∈ 2 ( 1)( 2 2ln )( ) ( ln ) x x xg x x x − + −′ = − [1, ]x e∈ 1 0x − ≥ ln 1x ≤ 2 2ln 0x x+ − > ( ) 0g x′ ≥ 1x = ( )g x [1, ]e ( )g x (1) 1g = − a [ 1, )− +∞ 2m = 1 πsin( )2 4 ρ θ= − Q x A ( 2,0) l 2 0x y m− + = A l | 2 2 | 1 3 2 md m += = + = 2m = l πsin( ) 24 ρ θ − = 0 0( , )P ρ θ ( , )Q ρ θ 00 0 0 11 ρρρ ρθ θ θ θ  == ⇒ =  = 0 0( , )P ρ θ l 0 0 πsin( ) 24 ρ θ − = 1 πsin( ) 24 θρ − = Q 1 πsin( )2 4 ρ θ= −化为直角坐标方程为 ,则点 的轨迹是一个圆. 23.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1) , ∵ , , ∴ . (2) , 要证 ,只要证 , 进一步只要证明 , 只要证明 , 因为 ,所以 , 所以 成立,所以结论成立. 2 22 2 1( ) ( )8 8 16x y+ + − = Q 2 2 1 2 1 2 1 2 1 2 2 2 1 2 | || || ( ) ( ) | 1 1 1 1 x x x xf x f x x x x x − +− = + − + = + + + 1 2 1 2| | | | | |x x x x+ ≤ + 2 2 1 2 1 21 1 | | | |x x x x+ + + > + 1 2 1 2( ) ( )f x f x x x− ≤ − 2 2( ) ( ) 1 1f a f b a b+ = + + + ( ) ( ) 6f a f b+ ≤ 2 21 1 6a b+ + + ≤ 2 2 2( 1 1 ) 6a b+ + + ≤ 2 2 3(1 )(1 ) 2a b+ + ≤ 2 2 1a b+ = 2 2 2 2 (1 ) (1 )(1 )(1 ) 2 a ba b + + ++ + ≤ 2 2 3(1 )(1 ) 2a b+ + ≤

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料