由莲山课件提供http://www.5ykj.com/ 资源全部免费
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
高考小题标准练(二)
满分80分,实战模拟,40分钟拿下高考客观题满分!
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={1,2,3},B={x|(x+1)(x-2)c>b
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.b>a>c D.c>b>a
【解析】选A.c=log2017=log20172016,所以b>c.
a=201>1,bb,所以a>b>c,故选A.
4.以下四个命题中:
①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ位于区域(0,1)内的概率为0.4,则ξ位于区域(0,2)内的概率为0.8;
④对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握越大.
其中真命题的序号为( )
A.①④ B.②④ C.①③ D.②③
【解析】选D.①应为系统(等距)抽样;②线性相关系数r的绝对值越接近于1,两变量间线性关系越密切;③变量ξ~N(1,σ2),P(01⇔(2ta-1)(ta+1)>0.又a>0,t∈(1,+∞),所以2at-1>0,即a>对一切t∈(1,+∞)恒成立,而0)的图象关于直线x=对称且f=0,如果存在实数x0,使得对任意的x都有f(x0)≤f(x)≤f,则ω的最小值是 世纪金榜导学号92494325( )
A.2 B.4 C.6 D.8
【解析】选B.函数f(x)=sin(ωx+φ)(ω>0)的图象关于x=对称且f=0,
所以ω+φ=kπ+ ①,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
-ω+φ=kπ ②,
ωx0++φ≤+2kπ且ωx0+φ≥-+2kπ ③,
由①②解得ω=4,φ=kπ+,(k∈Z),当k=0时,ω=4,φ=,③成立,满足题意.故得ω的最小值为4.
12.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为 世纪金榜导学号92494326( )
A.a,a B.a,
C., D.,a
【解析】选A.设|AF1|=x,|AF2|=y,由双曲线定义得|PF1|-|PF2|=2a,由三角形内切圆的性质得x-y=2a,又因为x+y=2c,所以x=a+c,所以|OA|=a.延长F2B交PF1于点C,因为PQ为∠F1PF2的平分线,所以|PF2|=|PC|,再由双曲线定义得|CF1|=2a,所以|OB|=a,故选A.
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
13.圆x2+y2=4上恰有三个点到直线x+y+m=0的距离都等于1,则m=________.
【解析】由题意知直线x+y+m=0为斜率为1的半径的中垂线,圆心到该直线的距离为1,即=1,所以m=±.
答案:±
14.已知偶函数f(x)在上单调递减,f=0.若f(x-1)>0,则x的取值范围是________.
【解析】因为f(x)是偶函数,所以不等式f(x-1)>0⇔f(|x-1|)>f(2),又因为f(x)在[0,+∞)上单调递减,所以|x-1|