福州市2018届高三数学3月检测试卷(理科带答案)
加入VIP免费下载

本文件来自资料包: 《福州市2018届高三数学3月检测试卷(理科带答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
理科数学参考答案及评分细则 第 1 页(共 11 页) 2018 年福州市高中毕业班质量检测 理科数学参考答案及评分细则 评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题 的主要考查内容比照评分标准制定相应的评分细则。 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的 内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数 的一半;如果后继部分的解答有较严重的错误,就不再给分。 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。 4.只给整数分数。选择题和填空题不给中间分。 一、选择题:本大题考查基础知识和基本运算.每小题 5 分,满分 60 分. (1)B (2)C (3)B (4)B (5)D (6)A (7)D (8)B (9)C (10)C (11)D (12)B 二、填空题:本大题考查基础知识和基本运算.每小题 5 分,满分 20 分. (13)6 (14) 33 4 (15) 6, (16) 1 三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤. (17) 本小题考查等差数列的通项与前 n 项和的公式、等比数列的前 n 项和的公式、错位相 减法求数列的和等基础知识,考查运算求解能力,考查函数与方程思想、化归和转化 思想等.满分 12 分. 解法一:(1)设等差数列{}na 的公差为 d , 因为 10 5 510 5 SS, 所以    110 1510 5 225,10 5 aa aa  ····························································· 2 分 所以 10 5 10,aa ·················································································· 3 分 所以510d  , 解得 2d  . ·························································································· 4 分 理科数学参考答案及评分细则 第 2 页(共 11 页) 所以 1 (1)2(1)22naa n d n n  ; ················································ 5 分 (2)由(1)知, 2nan ,所以   222 2n nnSnn . ································ 6 分 所以 2 12242422 2, n n S nn a nnn nnba n n n       ············································· 7 分 所以 345 212 22 22 2n nTn    ①, 所以 456 2 32 122232 (1)22nn nTnn  ②, ······················· 8 分 34 2 322 2 2nn nTn   ······························································· 9 分 3 32(12) 212 n nn  ······································································ 10 分 3328 2nnn ········································································· 11 分 所以 3(1)28n nTn  . ······································································ 12 分 解法二:(1)设等差数列{}na 的公差为 d , 因为 10 5 510 5 SS, 所以 11 10 9 5 410 + 5 +225,10 5 adad  ························································· 2 分 所以 5 52 d  , ······················································································ 3 分 解得 2.d  ·························································································· 4 分 所以 1 (1)2(1)22naa n d n n  ; ··················································· 5 分 (2)由(1)知, 2nan ,所以   222 2n nnSnn . ································ 6 分 所以 2 12242422 2, n n S nn a nnn nnba n n n       ············································· 7 分 设 32 2[( 1) ]2 ( )2 ( 2 )2nn n nbAnB AnB AnAB , ······················· 8 分 所以 222(2 )2nnnAnAB, 所以 1, 20, A AB    解得 1, 2. A B    ································································ 9 分 所以 32(1)2 22nn nbn n  , ······················································· 10 分 理科数学参考答案及评分细则 第 3 页(共 11 页) 所以 12nnTbb b   35 65 3 20121202212 [(1)2 22]nnnn     ···· 11 分  33(1)2 12nn   3(1)28nn  .············································································· 12 分 (18) 本小题主要考查空间直线与直线、直线与平面的平行关系及线面角等基础知识,考查 空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分 12 分. 解:(1)证明:如图,连接 1AB 、 1A B 交于点 H , 1A B 交 EF 于点 K ,连接 DK , 因为 11ABB A 为矩形,所以 H 为线段 1A B 中点, ··············································· 1 分 因为点 E 、 F 分别为棱 1,ABBB的中点, 所以点 K 为线段 BH 的中点,所以 1 3A KBK . 又因为 3CD BD ,所以 1AC DK∥ . ························································ 2 分 又 1AC 平面 DEF , DK  平面 DEF , ··················································· 3 分 所以 1AC∥平面 DEF ; ·········································································· 4 分 (2)由(1)知, 1EHAA∥ ,因为 1AA  平面 ABC ,所以 EH  平面 ABC . 因为△ ABC 为正三角形,且点 E 为棱 AB 的中点, 所以CE AB . ·················································································· 5 分 故以点 E 为坐标原点,分别以 ,,EA EH EC 的方向为 x 轴、 y 轴、 z 轴的正方向,建立 如图所示的空间直角坐标系 Exyz .设 4AB  , 1 0AA t t (), 则 1(2, ,0), (0,0, 2 3), (0,0,0), ( 2, ,0)2 tAt C E F , 33(,0,)22D  , 所以 1 (2,,23), (2,,0)2 tAC t EF    , 因为 1AC EF ,所以 1 0AC EF   , 所以 22 23002 tt ,解得 22t  . ···································· 7 分 所以 (2,2,0),EF   33(,0,)22ED   , 设平面 DEF 的法向量为 (, ,)nxyz , x y H K FD E B1 C1C B A1A z 理科数学参考答案及评分细则 第 4 页(共 11 页) 则 0 0 EF n ED n        ,所以 220 33022 xy xz     , 取 1x  ,则 (1, 2 , 3)n  . ··································································· 9 分 又因为 11 (2,0,23)AC AC   ,设直线 11AC 与平面 DEF 所成的角为 , 所以 11sin cos ,nAC     11 11 nAC nAC       46 664   ·································· 11 分 所以直线 11AC 与平面 DEF 所成的角的正弦值为 6 6 . ·································· 12 分 (19) 本小题主要考查频率分布直方图,随机变量的分布列与期望,二项分布,样本的数字 特征及正态分布等基础知识,考查用数据说话的能力、运算求解能力,考查或然与必 然思想等.满分 12 分. 解:(1)由频率估计概率, 产品为正品的概率为0.033 0.024 0.008 0.002 10 0.67 , ······················ 2 分 所以随机变量 X 的分布列为:  90 30 P 0.67 0.33 ······································································································ 3 分 所以    90 0.67 30 0.33 50.4E     . ·················································· 4 分 (2)由频率分布直方图,抽取产品的该项质量指标值的样本平均数 x 和样本方差 2s 分 别为 70 0.02 80 0.09 90 0.22 100 0.33 110 0.24 120 0.08 130 0.02 100x     , ········································································································ 5 分     222 222 230 0.02 20 0.09 10 0.22 0 0.33 10 0.24 20 0.08s    230 0.02 150 . ············································································ 6 分 ①因为 100,150ZN , 从而    88.8 112.2 100 12.2 100 12.2 0.6826PZ P Z      . ····················· 8 分 理科数学参考答案及评分细则 第 5 页(共 11 页) ②由①知,一件产品中该项质量指标值位于区间 87.8,112.2 的概率为 0.6826, 依题意知 500,0.6826XB , ····························································· 10 分 所以 500 0.6826 341.3EX  . ··························································· 12 分 (20) 本小题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系、圆的概念等基础 知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化的思想、 分类与整合思想等.满分 12 分. 解法一:(1)设点 (, )M xy,由 2MQAQ   ,得 (,2)A xy, ······························ 2 分 由于点 A 在圆 :C 224xy上,则 2244xy  , ······································· 3 分 即点 M 的轨迹 E 的方程为 2 2 14 x y  . ······················································· 4 分 (2)由(1)知, E 的方程为 2 2 14 x y  , 因为 E 与 y 轴正半轴的交点为 B,所以 B  0,1 . 所以过点 B 斜率为 k 的直线l 的方程为 1( 0)ykxk . 由 2 2 1 14 ykx x y   得 22(1 4 ) 8 0kx kx, 设 11 2 2(, ),(, )B xy Pxy ,因此 12 2 80, 14 kxx k , ········································ 5 分 22 12 2 81114 kBP k x x kk   . ······················································· 6 分 由于圆与椭圆的公共点有 个,由对称性可设在 轴左侧的椭圆上有两个不同的公共 点 ,P T ,满足 BPBT .此时直线 BP 斜率 0k  , 记直线 BT 的斜率为 ,且 1 0k  , 1kk . 则 1 2 12 1 8 114 kBTkk , ······································································ 7 分 故 1 22 122 1 881114 14 kkkkkk ,所以 24 24 11 22 1 014 14 kk kk kk    , 即 224 224 11 1(1 4 ) (1 4 )kkk k kk, 4 y 1k 理科数学参考答案及评分细则 第 6 页(共 11 页) 所以 22 22 22 111()(18)0kk kk kk, ····················································· 8 分 由于 1kk ,因此 22 22 11180kk kk , 故  2 2 1 2 2 1 1 1 19 81888 1 kk k k   . ································································ 9 分 因为 2 0k  ,所以 2 1810k  , 因此  2 2 1 191 8888 1 k k    ,又因为 0k  ,所以 2 4k  . ···························· 10 分 又因为 1kk ,所以 22 22180kk kk , 所以 428210kk,又因为 0k  ,解得 2 2k  . 所以 22 2(,)(,)42 2k  ; 根据椭圆的对称性, 222(, )( , )224k    也满足题意; ··················· 11 分 综上所述, k 的取值范围为 2 22222( , )( , )( , )( , )2 24422   . 12 分 解法二:(1)设点 11( , ), ( , ),M xy Ax y 则 1(,0)Qx . 因为 2MQAQ   ,所以    112, 0,x xy y   ,所以  1 1 20 2 xx y y     , ··············· 1 分 解得 1 1 2 x x yy    . ······················································································ 2 分 由于点 A 在圆 :C 224xy上,所以 2244xy  , ···································· 3 分 理科数学参考答案及评分细则 第 7 页(共 11 页) 所以点 M 的轨迹 E 的方程为 2 2 14 x y  .···················································· 4 分 (2)由(1)知, E 的方程为 2 2 14 x y  ,因为直线 :1(0)ly kx k , 由 2 2 1 14 ykx x y   得 22(1 4 ) 8 0kx kx, 设 11 2 2(, ),(, )Bx y Px y ,因此 12 2 80, 14 kxx k , ········································ 5 分 22 12 2 81114 kBP k x x kk   . ······················································· 6 分 则点的 P 的轨迹方程为 22 22 22 64 (1 )(1) (1 4 ) kkxy k    , 由 22 22 22 22 64 (1 )(1) ,(1 4 ) 44, kkxy k xy       得 22 2 22 64 (1 )325 0,(11)(*)(1 4 ) kkyy yk    ········································· 7 分 依题意得, (*) 式关于 y 的方程在 (1,1) 有两个不同的实数解. 设 22 2 22 64 (1 )() 3 2 5 (1 1)(1 4 ) kkfy y y yk   , ······································ 8 分 因为函数 ()f y 的对称轴为 1 3x  , 要使函数 ()f y 的图象在 (1,1) 与 x 轴有两个不同的交点, 则 22 22 64 (1 )443[5 ]0,(1 4 ) (1)0, kk k f            ··················································· 10 分 整理得 42 22 22 4410, 64 (1 )40,(1 4 ) kk kk k       即 42 42 4410, 12 8 1 0, kk kk       理科数学参考答案及评分细则 第 8 页(共 11 页) 所以 2 2 1 ,2 1.8 k k     ···················································································· 11 分 解得 2 22222( , )( , )( , )( , )2 24422k    . 所以 k 的取值范围为 2 22222( , )( , )( , )( , )2 24422    . ········ 12 分 (21) 本小题主要考查导数及其应用、函数的零点、函数的最值与值域等基础知识,考查推 理论证能力、运算求解能力、抽象概括能力等,考查函数与方程思想、化归与转化思 想、分类与整合思想、数形结合思想等. 解:(1)函数 ()f x 的定义域为 (0, ) ,且 () ln 1f xx   . ···························· 1 分 令 () 0fx  ,得 1 ex  . 当 0 1 ex时, () 0fx  , ()f x 在区间 (0, ) e 1 内单调递减; 当 e 1x  时, () 0fx  , ()f x 在区间 () e 1, 内单调递增. ····························· 3 分 故min() () ee 11fx f a . ···································································· 3 分 因为 0a  ,当 0,1x  时, ln 0xx ,即 () 0fx , 所以函数 ()f x 在区间 0,1 内无零点. ························································ 4 分 因为 (1) 0fa,  1(e e 0)-eaa afaaa   . 又 ()f x 在区间 ()1,  内单调递增, 根据零点存在性定理,得 函数 ()f x 在区间 (e )1, a 内有且只有一个零点. ············································ 5 分 综上,当 0a  时,函数 ()f x 在 (0, ) 的零点个数为 1. ································ 6 分 (2) () 4ln 4 ln 4 agx x x a x x  , 理科数学参考答案及评分细则 第 9 页(共 11 页) 则 () 4 ln 4 agx x x   ,由(1)知, ln 4 ayxx  在 1x  时单调递增, 对任意  e,04a  , (1) 0ga , e(0e) 4 4 ag    . 因此,存在唯一  ,1eax  ,使得 ()0agx  . ··············································· 7 分 当1 ax x 时, () 0gx  , ()g x 单调递减; 当 ax x 时, () 0gx  , ()g x 单调递增. 因此 ()g x 在 ax x 处取得最小值 ()ag x , 22()2 lnaaaaag xxxxax 22 222ln 4ln 2lnaaa aaaaaax xx x xx x xx ····································· 8 分 于是 ()ha   2212eln ,aaaaxxxx   , 由222ln 4(ln1)xxx xx  0( , )1ex , 得 222lnyxxx  在 1, e 单调递减. ························································ 9 分 所以,由  ,1eax  ,得 222lneee ()ha  222l111n  , 23e  ()ha  1 , ··········································································· 10 分 因为 222lnyxxx   (e)1,x  单调递减, 对任意 23e , 1   ,存在唯一的  ,1eax  ,  n,04el4aaaxx   ,使得 ()ha  . 所以 ()ha 的值域是 23e , 1 . ···································································· 11 分 综上,当  e,04a  ,函数 22() 2 lng xxxxax 有最小值, ()ha 的值域是 23e , 1 . ···································································· 12 分 (22) 本小题考查极坐标方程、直线与圆的位置关系、三角形面积的最值等基础知识,考查 运算求解能力,考查数形结合思想、化归与转化思想等.满分 10 分. 解:(1)设 P 的极坐标为 ,0  ,Q的极坐标为   11,0  , 理科数学参考答案及评分细则 第 10 页(共 11 页) 由题设知, OP  , 1 2 cos 6 OQ     , ·········································· 1 分 由 4OQ OP得 2C 的极坐标方程 2cos 06  , ························ 3 分 因此 2C 的直角坐标方程为 2 231122xy   ,但不包括点 00, . ··············· 5 分 (2)设点 B 的极坐标为   ,0BB  , 由题设知 2OA  , 2cos 6B , ···················································· 6 分 于是 AOB 面积为 1 sin2 BSOA AOB ················································ 7 分 2cos sin63=   2 332sin ,42 ··············································································· 9 分 当 0  时, S 取得最大值 3 2 . 所以 AOB 面积的最大值为 3 2 . ······························································ 10 分 (23) 本小题考查绝对值不等式的解法、不等式恒成立等基础知识,考查运算求解能力、推 理论证能力,考查分类与整合思想、化归与转化思想等.满分 10 分. 解:(1)不等式   2f xx 等价于 2 210xxx  ,① 当 0x  时,①式化为 2 310xx , ······················································ 1 分 解得 35 2x  或 350 2x  ; ··························································· 3 分 当 0x  时,①式化为 2 10xx , ························································ 4 分 解得 0x  , 综上所述,不等式   2f xx 的解集为 35 35 22xx x       或. ················· 5 分 理科数学参考答案及评分细则 第 11 页(共 11 页) (2)不等式 () 2 xf xa 在 0, 上恒成立,   2 xf xafx在 0, 上恒成立, ··········································· 6 分  22112 xx xaxx   在 0, 上恒成立,,  22131122x xaxx    在 0, 上恒成立,, ································· 7 分 由 2 2 1 1 15 1512 4 16 16xx x     (当且仅当 1 4x  时取等号), ··············· 8 分 2 2 337712 4 16 16xx x  (当且仅当 3 4x  时取等号), ························ 9 分 所以 15 7 16 16a  , 综上所述, a 的取值范围是 15 7,16 16  . ···················································· 10 分

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料