理科数学参考答案及评分细则 第 1 页(共 11 页)
2018 年福州市高中毕业班质量检测
理科数学参考答案及评分细则
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题
的主要考查内容比照评分标准制定相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的
内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数
的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数。选择题和填空题不给中间分。
一、选择题:本大题考查基础知识和基本运算.每小题 5 分,满分 60 分.
(1)B (2)C (3)B (4)B (5)D (6)A
(7)D (8)B (9)C (10)C (11)D (12)B
二、填空题:本大题考查基础知识和基本运算.每小题 5 分,满分 20 分.
(13)6 (14) 33
4 (15) 6, (16) 1
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤.
(17) 本小题考查等差数列的通项与前 n 项和的公式、等比数列的前 n 项和的公式、错位相
减法求数列的和等基础知识,考查运算求解能力,考查函数与方程思想、化归和转化
思想等.满分 12 分.
解法一:(1)设等差数列{}na 的公差为 d ,
因为 10 5 510 5
SS,
所以
110 1510 5
225,10 5
aa aa
····························································· 2 分
所以 10 5 10,aa ·················································································· 3 分
所以510d ,
解得 2d . ·························································································· 4 分
理科数学参考答案及评分细则 第 2 页(共 11 页)
所以 1 (1)2(1)22naa n d n n ; ················································ 5 分
(2)由(1)知, 2nan ,所以 222
2n
nnSnn . ································ 6 分
所以
2
12242422 2,
n
n
S nn
a nnn
nnba n n n
············································· 7 分
所以 345 212 22 22 2n
nTn ①,
所以 456 2 32 122232 (1)22nn
nTnn ②, ······················· 8 分
34 2 322 2 2nn
nTn ······························································· 9 分
3
32(12) 212
n
nn ······································································ 10 分
3328 2nnn ········································································· 11 分
所以 3(1)28n
nTn . ······································································ 12 分
解法二:(1)设等差数列{}na 的公差为 d ,
因为 10 5 510 5
SS,
所以 11
10 9 5 410 + 5 +225,10 5
adad
························································· 2 分
所以 5 52
d , ······················································································ 3 分
解得 2.d ·························································································· 4 分
所以 1 (1)2(1)22naa n d n n ; ··················································· 5 分
(2)由(1)知, 2nan ,所以 222
2n
nnSnn . ································ 6 分
所以
2
12242422 2,
n
n
S nn
a nnn
nnba n n n
············································· 7 分
设 32 2[( 1) ]2 ( )2 ( 2 )2nn n
nbAnB AnB AnAB , ······················· 8 分
所以 222(2 )2nnnAnAB,
所以 1,
20,
A
AB
解得 1,
2.
A
B
································································ 9 分
所以 32(1)2 22nn
nbn n , ······················································· 10 分
理科数学参考答案及评分细则 第 3 页(共 11 页)
所以 12nnTbb b
35 65 3 20121202212 [(1)2 22]nnnn ···· 11 分
33(1)2 12nn
3(1)28nn .············································································· 12 分
(18) 本小题主要考查空间直线与直线、直线与平面的平行关系及线面角等基础知识,考查
空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分 12 分.
解:(1)证明:如图,连接 1AB 、 1A B 交于点 H , 1A B 交 EF 于点 K ,连接 DK ,
因为 11ABB A 为矩形,所以 H 为线段 1A B 中点, ··············································· 1 分
因为点 E 、 F 分别为棱 1,ABBB的中点,
所以点 K 为线段 BH 的中点,所以 1 3A KBK .
又因为 3CD BD ,所以 1AC DK∥ . ························································ 2 分
又 1AC 平面 DEF , DK 平面 DEF , ··················································· 3 分
所以 1AC∥平面 DEF ; ·········································································· 4 分
(2)由(1)知, 1EHAA∥ ,因为 1AA 平面 ABC ,所以 EH 平面 ABC .
因为△ ABC 为正三角形,且点 E 为棱 AB 的中点,
所以CE AB . ·················································································· 5 分
故以点 E 为坐标原点,分别以 ,,EA EH EC
的方向为 x 轴、 y 轴、 z 轴的正方向,建立
如图所示的空间直角坐标系 Exyz .设 4AB , 1 0AA t t (),
则 1(2, ,0), (0,0, 2 3), (0,0,0), ( 2, ,0)2
tAt C E F , 33(,0,)22D ,
所以 1 (2,,23), (2,,0)2
tAC t EF
,
因为 1AC EF ,所以 1 0AC EF
,
所以 22 23002
tt ,解得 22t . ···································· 7 分
所以 (2,2,0),EF
33(,0,)22ED
,
设平面 DEF 的法向量为 (, ,)nxyz ,
x
y
H
K
FD
E
B1
C1C
B
A1A
z
理科数学参考答案及评分细则 第 4 页(共 11 页)
则 0
0
EF n
ED n
,所以
220
33022
xy
xz
,
取 1x ,则 (1, 2 , 3)n . ··································································· 9 分
又因为 11 (2,0,23)AC AC
,设直线 11AC 与平面 DEF 所成的角为 ,
所以 11sin cos ,nAC
11
11
nAC
nAC
46
664
·································· 11 分
所以直线 11AC 与平面 DEF 所成的角的正弦值为 6
6
. ·································· 12 分
(19) 本小题主要考查频率分布直方图,随机变量的分布列与期望,二项分布,样本的数字
特征及正态分布等基础知识,考查用数据说话的能力、运算求解能力,考查或然与必
然思想等.满分 12 分.
解:(1)由频率估计概率,
产品为正品的概率为0.033 0.024 0.008 0.002 10 0.67 , ······················ 2 分
所以随机变量 X 的分布列为:
90 30
P 0.67 0.33
······································································································ 3 分
所以 90 0.67 30 0.33 50.4E . ·················································· 4 分
(2)由频率分布直方图,抽取产品的该项质量指标值的样本平均数 x 和样本方差 2s 分
别为
70 0.02 80 0.09 90 0.22 100 0.33 110 0.24 120 0.08 130 0.02 100x ,
········································································································ 5 分
222 222 230 0.02 20 0.09 10 0.22 0 0.33 10 0.24 20 0.08s
230 0.02 150 . ············································································ 6 分
①因为 100,150ZN ,
从而 88.8 112.2 100 12.2 100 12.2 0.6826PZ P Z . ····················· 8 分
理科数学参考答案及评分细则 第 5 页(共 11 页)
②由①知,一件产品中该项质量指标值位于区间 87.8,112.2 的概率为 0.6826,
依题意知 500,0.6826XB , ····························································· 10 分
所以 500 0.6826 341.3EX . ··························································· 12 分
(20) 本小题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系、圆的概念等基础
知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化的思想、
分类与整合思想等.满分 12 分.
解法一:(1)设点 (, )M xy,由 2MQAQ
,得 (,2)A xy, ······························ 2 分
由于点 A 在圆 :C 224xy上,则 2244xy , ······································· 3 分
即点 M 的轨迹 E 的方程为
2
2 14
x y . ······················································· 4 分
(2)由(1)知, E 的方程为
2
2 14
x y ,
因为 E 与 y 轴正半轴的交点为 B,所以 B 0,1 .
所以过点 B 斜率为 k 的直线l 的方程为 1( 0)ykxk .
由 2
2
1
14
ykx
x y
得 22(1 4 ) 8 0kx kx,
设 11 2 2(, ),(, )B xy Pxy ,因此 12 2
80, 14
kxx k
, ········································ 5 分
22
12 2
81114
kBP k x x kk . ······················································· 6 分
由于圆与椭圆的公共点有 个,由对称性可设在 轴左侧的椭圆上有两个不同的公共
点 ,P T ,满足 BPBT .此时直线 BP 斜率 0k ,
记直线 BT 的斜率为 ,且 1 0k , 1kk .
则 1 2
12
1
8 114
kBTkk
, ······································································ 7 分
故 1 22
122
1
881114 14
kkkkkk ,所以
24 24
11
22
1
014 14
kk kk
kk
,
即 224 224
11 1(1 4 ) (1 4 )kkk k kk,
4 y
1k
理科数学参考答案及评分细则 第 6 页(共 11 页)
所以 22 22 22
111()(18)0kk kk kk, ····················································· 8 分
由于 1kk ,因此 22 22
11180kk kk ,
故
2
2 1
2 2
1 1
1 19
81888 1
kk k k
. ································································ 9 分
因为 2 0k ,所以 2
1810k ,
因此
2
2
1
191
8888 1
k
k
,又因为 0k ,所以 2
4k . ···························· 10 分
又因为 1kk ,所以 22 22180kk kk ,
所以 428210kk,又因为 0k ,解得 2
2k .
所以 22 2(,)(,)42 2k ;
根据椭圆的对称性, 222(, )( , )224k 也满足题意; ··················· 11 分
综上所述, k 的取值范围为 2 22222( , )( , )( , )( , )2 24422 . 12 分
解法二:(1)设点 11( , ), ( , ),M xy Ax y 则 1(,0)Qx .
因为 2MQAQ
,所以 112, 0,x xy y ,所以 1
1
20
2
xx
y y
, ··············· 1 分
解得 1
1 2
x x
yy
. ······················································································ 2 分
由于点 A 在圆 :C 224xy上,所以 2244xy , ···································· 3 分
理科数学参考答案及评分细则 第 7 页(共 11 页)
所以点 M 的轨迹 E 的方程为
2
2 14
x y .···················································· 4 分
(2)由(1)知, E 的方程为
2
2 14
x y ,因为直线 :1(0)ly kx k ,
由 2
2
1
14
ykx
x y
得 22(1 4 ) 8 0kx kx,
设 11 2 2(, ),(, )Bx y Px y ,因此 12 2
80, 14
kxx k
, ········································ 5 分
22
12 2
81114
kBP k x x kk . ······················································· 6 分
则点的 P 的轨迹方程为
22
22
22
64 (1 )(1) (1 4 )
kkxy k
,
由
22
22
22
22
64 (1 )(1) ,(1 4 )
44,
kkxy k
xy
得
22
2
22
64 (1 )325 0,(11)(*)(1 4 )
kkyy yk
········································· 7 分
依题意得, (*) 式关于 y 的方程在 (1,1) 有两个不同的实数解.
设
22
2
22
64 (1 )() 3 2 5 (1 1)(1 4 )
kkfy y y yk
, ······································ 8 分
因为函数 ()f y 的对称轴为 1
3x ,
要使函数 ()f y 的图象在 (1,1) 与 x 轴有两个不同的交点,
则
22
22
64 (1 )443[5 ]0,(1 4 )
(1)0,
kk
k
f
··················································· 10 分
整理得
42
22
22
4410,
64 (1 )40,(1 4 )
kk
kk
k
即
42
42
4410,
12 8 1 0,
kk
kk
理科数学参考答案及评分细则 第 8 页(共 11 页)
所以
2
2
1 ,2
1.8
k
k
···················································································· 11 分
解得 2 22222( , )( , )( , )( , )2 24422k .
所以 k 的取值范围为 2 22222( , )( , )( , )( , )2 24422 . ········ 12 分
(21) 本小题主要考查导数及其应用、函数的零点、函数的最值与值域等基础知识,考查推
理论证能力、运算求解能力、抽象概括能力等,考查函数与方程思想、化归与转化思
想、分类与整合思想、数形结合思想等.
解:(1)函数 ()f x 的定义域为 (0, ) ,且 () ln 1f xx . ···························· 1 分
令 () 0fx ,得 1
ex .
当 0 1
ex时, () 0fx , ()f x 在区间 (0, )
e
1 内单调递减;
当
e
1x 时, () 0fx , ()f x 在区间 ()
e
1, 内单调递增. ····························· 3 分
故min() ()
ee
11fx f a . ···································································· 3 分
因为 0a ,当 0,1x 时, ln 0xx ,即 () 0fx ,
所以函数 ()f x 在区间 0,1 内无零点. ························································ 4 分
因为 (1) 0fa, 1(e e 0)-eaa afaaa .
又 ()f x 在区间 ()1, 内单调递增,
根据零点存在性定理,得
函数 ()f x 在区间 (e )1, a 内有且只有一个零点. ············································ 5 分
综上,当 0a 时,函数 ()f x 在 (0, ) 的零点个数为 1. ································ 6 分
(2) () 4ln 4 ln 4
agx x x a x x
,
理科数学参考答案及评分细则 第 9 页(共 11 页)
则 () 4 ln
4
agx x x
,由(1)知, ln
4
ayxx 在 1x 时单调递增,
对任意 e,04a , (1) 0ga , e(0e) 4
4
ag
.
因此,存在唯一 ,1eax ,使得 ()0agx . ··············································· 7 分
当1 ax x 时, () 0gx , ()g x 单调递减;
当 ax x 时, () 0gx , ()g x 单调递增.
因此 ()g x 在 ax x 处取得最小值 ()ag x ,
22()2 lnaaaaag xxxxax
22 222ln 4ln 2lnaaa aaaaaax xx x xx x xx ····································· 8 分
于是 ()ha 2212eln ,aaaaxxxx ,
由222ln 4(ln1)xxx xx 0( , )1ex ,
得 222lnyxxx 在 1, e 单调递减. ························································ 9 分
所以,由 ,1eax ,得 222lneee ()ha 222l111n ,
23e ()ha 1 , ··········································································· 10 分
因为 222lnyxxx (e)1,x 单调递减,
对任意 23e , 1 ,存在唯一的 ,1eax , n,04el4aaaxx ,使得 ()ha .
所以 ()ha 的值域是 23e , 1 . ···································································· 11 分
综上,当 e,04a ,函数 22() 2 lng xxxxax 有最小值,
()ha 的值域是 23e , 1 . ···································································· 12 分
(22) 本小题考查极坐标方程、直线与圆的位置关系、三角形面积的最值等基础知识,考查
运算求解能力,考查数形结合思想、化归与转化思想等.满分 10 分.
解:(1)设 P 的极坐标为 ,0 ,Q的极坐标为 11,0 ,
理科数学参考答案及评分细则 第 10 页(共 11 页)
由题设知, OP , 1
2
cos 6
OQ
, ·········································· 1 分
由 4OQ OP得 2C 的极坐标方程 2cos 06
, ························ 3 分
因此 2C 的直角坐标方程为
2 231122xy
,但不包括点 00, . ··············· 5 分
(2)设点 B 的极坐标为 ,0BB ,
由题设知 2OA , 2cos 6B
, ···················································· 6 分
于是 AOB 面积为 1 sin2 BSOA AOB ················································ 7 分
2cos sin63=
2 332sin ,42 ··············································································· 9 分
当 0 时, S 取得最大值 3
2 .
所以 AOB 面积的最大值为 3
2 . ······························································ 10 分
(23) 本小题考查绝对值不等式的解法、不等式恒成立等基础知识,考查运算求解能力、推
理论证能力,考查分类与整合思想、化归与转化思想等.满分 10 分.
解:(1)不等式 2f xx 等价于 2 210xxx ,①
当 0x 时,①式化为 2 310xx , ······················································ 1 分
解得 35
2x 或 350 2x ; ··························································· 3 分
当 0x 时,①式化为 2 10xx , ························································ 4 分
解得 0x ,
综上所述,不等式 2f xx 的解集为 35 35
22xx x
或. ················· 5 分
理科数学参考答案及评分细则 第 11 页(共 11 页)
(2)不等式 () 2
xf xa 在 0, 上恒成立,
2
xf xafx在 0, 上恒成立, ··········································· 6 分
22112
xx xaxx 在 0, 上恒成立,,
22131122x xaxx 在 0, 上恒成立,, ································· 7 分
由
2
2 1 1 15 1512 4 16 16xx x
(当且仅当 1
4x 时取等号), ··············· 8 分
2
2 337712 4 16 16xx x
(当且仅当 3
4x 时取等号), ························ 9 分
所以 15 7
16 16a ,
综上所述, a 的取值范围是 15 7,16 16
. ···················································· 10 分