人教版八下数学 第十八章《 平行四边形》全章PPT课件
加入VIP免费下载

第十八章 小结与复习.ppt

本文件来自资料包:《人教版八下数学 第十八章《 平行四边形》全章PPT课件》

共有 12 个子文件

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
18.2.3 正方形 第十八章 平行四边形 导入新课 讲授新课 当堂练习 课堂小结 第 1 课时 正方形的性质 学习目标 1.理解正方形的概念 . 2. 探索并证明正方形的性质,并了解平行四边形、 矩形、菱形之间的联系和区别 .( 重点、难点 ) 3 .会应用正方形 的性质解决相关 证明及计算 问题 . (难点) 导入新课 观察下面图形 , 正 方形是我们熟悉的几何图形, 在 生活中无处不在 . 情景引入 你还能举出其他的例子吗? 讲授新课 矩 形 〃 〃 问题 1 : 矩形怎样变化后就成了正方形呢 ? 你有什么 发现? 问题引入 正方形的性质 正方形 问题 2 菱形怎样变化后就成了正方形呢 ? 你有什么 发现? 正方形 邻边相等 矩形 〃 〃 正方形 〃 〃 菱 形 一个角是直角 正方形 ∟ 正方形定义: 有一组邻边相等并且有一个角是直角的平行四边形叫正方形 . 归纳总结 已知:如图 , 四边形 ABCD 是正方形 . 求证:正方形 ABCD 四边相等 , 四个角都是直角 . A B C D 证明:∵四边形 ABCD 是正方形 . ∴∠ A =90° , AB = AC (正方形的定义) . 又∵正方形是平行四边形 . ∴ 正方形是矩形(矩形的定义) , 正方形是菱形 ( 菱形的定义 ). ∴∠ A =∠ B =∠ C =∠ D = 90° , AB= BC = CD = AD . 证一证 已知:如图 , 四边形 ABCD 是正方形 . 对角线 AC 、 BD 相交于点 O . 求证 : AO = BO = CO = DO , AC ⊥ BD . A B C D O 证明:∵正方形 ABCD 是矩形 , ∴ AO = BO = CO = DO . ∵ 正方形 ABCD 是菱形 . ∴ AC ⊥ BD . 思考 请同学们拿出准备好的正方形纸片 , 折一折 , 观察并思考 .   正方 形是不是轴对称图形 ? 如果是,那么对称轴有几条 ? 对称性: . 对称轴: . 轴对称图形 4 条 A B C D 矩形 菱形 正 方 形 平行四边形 正方形是特殊的平行四边形 , 也是特殊的矩形 , 也是特殊的菱形 . 所以矩形、菱形有的性质 , 正方形都有 . 平行四边形、矩形、菱形、正方形之间关系: 性质: 1. 正方形的四个角都是直角 , 四条边相等 . 2. 正方形的对角线相等且互相垂直平分 . 归纳总结 例 1 求证 : 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形 . A D C B O 已知 : 如图 , 四边形 ABCD 是正方形 , 对角线 AC 、 BD 相 交于点 O . 求证 : △ ABO 、 △ BCO 、 △ CDO 、 △ DAO 是全等的 等腰直角三角形 . 证明 : ∵ 四边形 ABCD 是正方形 , ∴ AC = BD , AC ⊥ BD , AO = BO = CO = DO . ∴ △ ABO 、 △ BCO 、 △ CDO 、 △ DAO 都 是等腰直角三角形 , 并且 △ ABO ≌ △ BCO ≌ △ CDO ≌ △ DAO . 典例精析 例 2 如图,在正方形 ABCD 中, Δ BEC 是等边三角形, 求证: ∠ EAD =∠ EDA = 15° . 证明:∵ Δ BEC 是等边三角形, ∴ BE = CE = BC ,∠ EBC =∠ ECB =60 °, ∵ 四边形 ABCD 是正方形, ∴ AB = BC = CD ,∠ ABC =∠ DCB =90 °, ∴ AB = BE = CE = CD , ∠ ABE = ∠ DCE =30 °, ∴△ ABE ,△ DCE 是等腰三角形, ∴∠ BAE = ∠ BEA = ∠ CDE = ∠ CED =75 °, ∴∠ EAD = ∠ EDA =90 ° -75 ° =15 ° . 【变式题 1 】 四边形 ABCD 是正方形,以正方形 ABCD 的一边作等边 △ ADE ,求 ∠ BEC 的大小. 解:当等边 △ ADE 在正方形 ABCD 外部时,如图 ① , AB = AE , ∠ BAE = 90° + 60° = 150°. ∴∠ AEB = 15°. 同理可得 ∠ DEC = 15°. ∴∠ BEC = 60° - 15° - 15° = 30° ; 当等边 △ ADE 在正方形 ABCD 内部时,如图 ② , AB = AE , ∠ BAE = 90° - 60° = 30° , ∴∠ AEB = 75°. 同理可得 ∠ DEC = 75°. ∴∠ BEC = 360° - 75° - 75° - 60° = 150°. 综上所述, ∠ BEC 的大小为 30° 或 150°. 易错提醒:因为等边△ ADE 与正方形 ABCD 有一条公共边,所以边相等.本题分两种情况:等边△ ADE 在正方形的外部或在正方形的内部. 【变式题 2 】 如图,在正方形 ABCD 内有一点 P 满足 AP = AB , PB = PC ,连接 AC 、 PD . (1)求证:△ APB ≌ △ DPC ; 解:∵四边形 ABCD 是正方形, ∴∠ ABC =∠ DCB =90°. ∵ PB = PC , ∴∠ PBC =∠ PCB . ∴∠ ABC -∠ PBC =∠ DCB -∠ PCB , 即∠ ABP =∠ DCP . 又∵ AB = DC , PB = PC , ∴△ APB ≌ △ DPC . 证明:∵四边形 ABCD 是正方形, ∴∠ BAC =∠ DAC =45°. ∵△ APB ≌ △ DPC , ∴ AP = DP . 又∵ AP = AB = AD , ∴ DP = AP = AD . ∴△ APD 是等边三角形. ∴∠ DAP =60°. ∴∠ PAC =∠ DAP -∠ DAC =15°. ∴∠ BAP =∠ BAC -∠ PAC =30°. ∴∠ BAP =2∠ PAC . (2) 求证: ∠ BAP =2∠ PAC . 例 3 如图,在正方形 ABCD 中, P 为 BD 上一点, PE⊥BC 于 E , PF ⊥ DC 于 F . 试说明: AP = EF . A B C D P E F 解 : 连接 PC , AC . 又 ∵ PE ⊥ BC , PF ⊥ DC , ∵ 四边形 ABCD 是正方形 , ∴∠ FCE =90°, AC 垂直平分 BD , ∴ 四边形 PECF 是矩形 , ∴ PC = EF . ∴ AP = PC . ∴ AP = EF . 在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明 . 归纳 1. 正方形具有而矩形不一定具有的性质是 ( ) A. 四个角相等 B. 对角线互相垂直平分 C. 对角互补 D. 对角线相等 2. 正方形具有而菱形不一定具有的性质( ) A. 四条边相等 B. 对角线互相垂直平分 C. 对角线平分一组对角 D. 对角线相等 B D 练一练 3. 如图,四边形 ABCD 是正方形,对角线 AC 与 BD 相交于点 O , AO = 2 ,求正方形的周长与面积. 解: ∵ 四边形 ABCD 是正方形, ∴ AC ⊥ BD , OA = OD = 2. 在 Rt△ AOD 中,由勾股定理,得 ∴ 正方形的周长为 4 AD = , 面积为 AD 2 = 8. 2. 一个正方形的对角线长为2cm,则它的面积是 (  ) A . 2cm 2 B . 4cm 2 C . 6cm 2 D . 8cm 2 A 1. 平行四边形、矩形、菱形、正方形都具有的是( ) A.对角线互相平分 B.对角线互相垂直 C.对角线相等 D.对角线互相垂直且相等 A 当堂练习 3 .在正方形 ABC 中 , ∠ ADB = , ∠ DAC = , ∠ BOC = . 4. 在正方形 ABCD 中, E 是对角线 AC 上一点,且 AE=AB ,则∠ EBC 的度数是 . A D B C O A D B C O E 45° 90° 22.5° 第 3 题图 第 4 题图 45° 5. 如图,正方形 ABCD 的边长为 1cm , AC 为对角线, AE 平分 ∠ BAC , EF ⊥ AC ,求 BE 的长. 解: ∵ 四边形 ABCD 为正方形, ∴∠ B = 90° , ∠ ACB = 45° , AB = BC = 1cm. ∵ EF ⊥ AC , ∴∠ EFA = ∠ EFC = 90°. 又 ∵∠ ECF = 45° , ∴△ EFC 是等腰直角三角形, ∴ EF = FC . ∵∠ BAE = ∠ FAE , ∠ B = ∠ EFA = 90° , AE = AE , ∴△ ABE ≌ △ AFE , ∴ AB = AF = 1cm , BE = EF . ∴ FC = BE . 在 Rt△ ABC 中, ∴ FC = AC - AF = ( - 1)cm , ∴ BE = ( - 1)cm . 6. 如图在正方形 ABCD 中 , E 为 CD 上一点, F 为 BC 边延长线上一点 , 且 CE = CF . BE 与 DF 之间有怎样的关系?请说明理由 . 解: BE = DF ,且 BE ⊥ DF .理由如下: ∵四边形 ABCD 是正方形. ∴ BC = DC ,∠ BCE =90° . ∴∠ DCF =180° - ∠ BCE =90°. ∴∠ BCE =∠ DCF . 又∵ CE = CF . ∴△ BCE ≌ △ DCF . ∴ BE=DF . A B D C F E 延长 BE 交 DE 于点 M , ∵ △ BCE ≌ △ DCF , ∴∠ CBE = ∠ CDF . ∵∠ DCF =90° , ∴∠ CDF +∠ F =90° , ∴∠ CBE +∠ F =90° , ∴∠ BMF =90°. ∴ BE ⊥ DF . A B D F E C M 课堂小结 1. 四个角都是直角 2. 四条边都相等 3. 对角线相等且互相垂直平分 正方形的性质 性质 定义 有一组邻相等,并且有一个角是直角的平行四边形叫做正方形 . 更多精彩视频内容,敬请关注微信公众号:我是好教师 微信扫描二维码下载更多资源

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料