【基础演练】
1.(2011·宁波)平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( )
A.(-3,2) B.(3,-2)
C.(-2,3) D.(2,3)
解析 根据关于坐标原点对称的点的坐标的规律:横纵坐标互为相反数,所以(2,-3)关于原点对称的点为(-2,3).
答案 C
2.(2012·烟台)如图,所给图形中是中心对称图形但不是轴对称图形的是( )
解析 A.不是轴对称图形,也不是中心对称图形,故本选项错误;B.是轴对称图形,也是中心对称图形,故本选项错误;C.不是轴对称图形,是中心对称图形,故本选项正确;D.是轴对称图形,不是中心对称图形,故本选项错误.
答案 C
3.下列交通标志既是中心对称图形,又是轴对称图形的是 ( )
- 6 -
解析 A是轴对称但不是中心对称;B、C既不是轴对称也不是中心对称,D既是轴对称也是中心对称.
答案 D
4. (2010·永州)如图,这是一个正面为黑,反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘并使其颜色一致,请问应选择的拼木是( )
解析 A、C和D旋转之后都不能与图形拼满,B旋转180°后可得出与图形空白处相同的形状.
答案 B
5.(2012·苏州)如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是 ( )
A.25° B.30° C.35° D.40°
解析 ∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,
∴∠A′OA=45°,∠AOB=∠A′OB′=15°,
∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°.
答案 B
6. (2012·玉林)如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D
- 6 -
=________.
解析 ∵∠A=30°,AC=10,∠ABC=90°,
∴∠C=60°,BC=BC′=AC=5,
∴△BCC′是等边三角形,
∴CC′=5,
∵∠A′C′B=∠C′BC=60°,
∴C′D∥BC,
∴DC′是△ABC的中位线,
∴DC′=BC=.
答案
【能力提升】
7.(2012·南通)如图Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2012为止,则AP2012等于 ( )
A.2 011+671 B.2 012+671
C.2 013+671 D.2 014+671
解析 ∵Rt△ABC中,∠ACB=90°,∠B=30°,
AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2++1=3+;又∵2 012÷3=670…2,
∴AP2 012=670(3+)+2+=2 012+671.
答案 B
- 6 -
8. (2012·无锡)如图,△ABC中,∠C=30°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=________度.
解析 ∵△ADE是由△ABC绕点A顺时针旋转60°得到的,
∴∠CAF=60°;
又∵∠C=30°(已知),
∴在△AFC中,∠CFA=180°-∠C-∠CAF=90°,
∴∠AFB=90°.
答案 90
9. 如图四边形ABCD和四边形OEFG都是正方形,点O是正方形ABCD两对角线的交点,已知AB=2,EF=3,正方形OEFG绕点O转动,OE交BC上一点N,OG交CD上一点M.求四边形OMCN的面积.
解 ∵四边形ABCD是正方形,对角线AC、BD相交
于点O,
∴OB=OC,∠4=∠5=45°,∠BOC=90°,
即∠1+∠2=90°.
又∵四边形OEFG是正方形,
∴∠EOG=90°,
即∠2+∠3=90°,
∴∠1=∠3.
在△BON和△COM中
∴△BON≌△COM(ASA)
∴S四边形OMCN=S△ONC+S△OCM=S△ONC+S△BON
=S△BOC=S正方形ABCD=×22=1.
即四边形OMCN的面积为1.
10.(2012·莱芜)如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是
- 6 -
AB、AC边的中点,将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).
(1)探究DB′与EC′的数量关系,并给予证明;
(2)当DB′∥AE时,试求旋转角α的度数.
解 (1)DB′=EC′.理由如下:
∵AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点,
∴AD=AE=AB,∵△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′,
∴∠B′AD=∠C′AE=a,AB′=AB,AC′=AC,∴AB′=AC′,
在△B′AD和C′AE中,
∵
∴DB′=EC′;
(2)∵DB′∥AE,∴∠B′DA=∠DAE=90°,
在Rt△B′DA中,
∵AD=AB=AB′,
∴∠AB′D=30°,∴∠B′AD=90°-30°=60°,
即旋转角α的度数为60°.
图 1
11. (2012·宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到
- 6 -
点E′处)连接DE′.
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠45°).
求证:DE2=AD2+EC2.
图 2
(1)证明 ∵∠DBE=∠ABC,
∴∠ABD+∠CBE=∠DBE=∠ABC,
∵△ABE′由△CBE旋转而成,
∴BE=BE′,∠ABE′=∠CBE,
∴∠DBE′=∠DBE,
在△DBE与△DBE′中,
∵BE=BE′,∠DBE=∠DBE′
BD=BD
∴△DBE≌△DBE′(SAS),∴DE′=DE.
(2)如图所示:把△CBE旋转90°,
连接DE′,
∵BA=BC,∠ABC=90°,
∴∠BAC=∠BCE=45°,
∴图形旋转后点C与点A重合,CE与AE′重合,
∴AE′=EC,
∴∠E′AB=∠BCE=45°,
∴∠DAE′=90°,
在Rt△ADE′中,DE′2=AE′2+AD2,
∵AE′=EC,
∴DE′2=EC2+AD2
同(1)可得DE=DE′,∴DE2=AD2+EC2.
- 6 -
- 6 -