第三章 数列
考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题. §03. 数 列 知识要点
数列
数列的定义
数列的有关概念
数列的通项
数列与函数的关系
项
项数
通项
等差数列
等差数列的定义
等差数列的通项
等差数列的性质
等差数列的前n项和
等比数列
等比数列的定义
等比数列的通项
等比数列的性质
等比数列的前n项和
等差数列
等比数列
定义
递推公式
;
;
通项公式
( )
中项
( )
( )
前 项和
重要性质
1. ⑴等差、等比数列:
等差数列
等比数列
定义
通项公式
= +(n-1)d= +(n-k)d= + -d
求和公式
中项公式
A= 推广:2 =
。推广:
性质
1
若m+n=p+q则
若m+n=p+q,则 。
2
若 成A.P(其中 )则 也为A.P。
若 成等比数列 (其中 ),则 成等比数列。
3
. 成等差数列。
成等比数列。
4
,
5
⑵看数列是不是等差数列有以下三种方法:
①
②2 ( )
③ ( 为常数).
⑶看数列是不是等比数列有以下四种方法:
①
② ( , )①
注①:i. ,是a、b、c成等比的双非条件,即 a、b、c等比数列.
ii. (ac>0)→为a、b、c等比数列的充分不必要.
iii. →为a、b、c等比数列的必要不充分.
iv. 且 →为a、b、c等比数列的充要.
注意:任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.
③ ( 为非零常数).
④正数列{ }成等比的充要条件是数列{ }( )成等比数列.
⑷数列{ }的前 项和 与通项 的关系:
[注]: ① ( 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若 不为0,则是等差数列充分条件).
②等差{ }前n项和 → 可以为零也可不为零→为等差的充要条件→若 为零,则是等差数列的充分条件;若 不为零,则是等差数列的充分条件.
③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)
2. ①等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍 ;
②若等差数列的项数为2 ,则 ;
③若等差数列的项数为 ,则 ,且 ,
.
3. 常用公式:①1+2+3 …+n =
②
③
[注]:熟悉常用通项:9,99,999,… ; 5,55,555,… .
4. 等比数列的前 项和公式的常见应用题:
⑴生产部门中有增长率的总产量问题. 例如,第一年产量为 ,年增长率为 ,则每年的产量成等比数列,公比为 . 其中第 年产量为 ,且过 年后总产量为:
⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存 元,利息为 ,每月利息按复利计算,则每月的 元过 个月后便成为 元. 因此,第二年年初可存款:
= .
⑶分期付款应用题: 为分期付款方式贷款为a元;m为m个月将款全部付清; 为年利率.
5. 数列常见的几种形式:
⑴ (p、q为二阶常数) 用特证根方法求解.
具体步骤:①写出特征方程 ( 对应 ,x对应 ),并设二根 ②若 可设 ,若 可设 ;③由初始值 确定 .
⑵ (P、r为常数) 用①转化等差,等比数列;②逐项选代;③消去常数n转化为 的形式,再用特征根方法求 ;④ (公式法), 由 确定.
①转化等差,等比: .
②选代法:
.
③用特征方程求解: .
④由选代法推导结果: .
6. 几种常见的数列的思想方法:
⑴等差数列的前 项和为 ,在 时,有最大值. 如何确定使 取最大值时的 值,有两种方法:
一是求使 ,成立的 值;二是由 利用二次函数的性质求 的值.
⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前 项和可依照等比数列前 项和的推倒导方法:错位相减求和. 例如:
⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差 的最小公倍数.
2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证 为同一常数。(2)通项公式法。(3)中项公式法:验证 都成立。
3. 在等差数列{ }中,有关Sn 的最值问题:(1)当 >0,d