2015年六年级数学下册第4-5单元教案(苏教版)
加入VIP免费下载

本文件来自资料包: 《2015年六年级数学下册第4-5单元教案(苏教版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第四单元 比例 教学内容:图形的放大与缩小,比例的意义与性质。‎ 教材分析:‎ 两个内容分别属于两个知识领域,前者是图形与几何的内容,后者是数与代数的内容。在一个单元里同时教学两个领域的知识,这样的教材很少遇到。本单元把图形的放大与缩小、比例的意义与性质结合起来教学,是因为这两个内容能够互相利用、互相支持。图形放大或缩小的过程中,大小变了,但形状与结构都保持不变,比例能够准确地揭示图形放大或缩小的本质特征,帮助学生建立图形放大与缩小的正确概念。比例是表示两个比相等的式子,这个相当抽象的数学概念和图形的放大或缩小联系起来,就有了具体的含义,图形的放大、缩小有助于学生形成比例的概念。全单元编排七道例题,具体安排如下: 例1.例2 图形放大与缩小的含义 在方格纸上把图形放大或缩小 例3 比例的意义 例4 比例的性质 例5 解比例 例6.例7 比例尺的意义 比例尺的实际应用 教学目标:‎ ‎1.使学生在现实的情景中初步理解图形的放大和缩小,能在方格纸上将简单的图形放大或缩小;联系图形的放大和缩小理解比例的意义,认识比例的项和内项、外项;理解并掌握比例的基本性质,能应用比例的基本性质解比例;理解比例尺的意义,知道比例尺的不同表达形式,会求平面图的比例尺、能应用比例尺解决一些实际问题。‎ ‎2.使学生经历认识比例和应用比例有关知识解决问题的过程,进一步丰富对现实世界中数量关系的认识,体会不同领域数学知识之间的联系,获得一些解决问题的策略,培养初步的形象思维和逻辑思维,发展空间观念。‎ ‎3.使学生在参与数学活动的过程中,进一步体会数学在日常生活和生产中的广泛应用,感受数学知识和方法的学习价值;获得一些学习成功的体验,激发对数学学习的兴趣,增强学好数学的信心。‎ 重点难点:‎ ‎ 理解比例的意义,认识比例,应用比例的基本性质解决实际问题。理解比例尺的意义和作用,会求图上距离和实际距离 课时:7课时 第一课时 图形的放大和缩小(一)‎ 教学内容:教科书第33~34页例1.例2“试一试”和“练一练”,练习六第1.2题 教学目标:‎ ‎1.使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。‎ ‎2.使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。‎ ‎3.初步体会图形的相似,进一步发展空间观念。‎ 教学重难点:‎ 理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小。 教学过程:‎ 一、基础训练,引入新知 呈现例1图片在黑板上。‎ 提问:把放大前后的两幅画相比,你能发现什么?‎ 根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后长方形的长和宽与原 来相比,其中变化有什么规律?这就是我们今天要学习的内容。‎ 板书课题:图形的放大和缩小 二、探究体验,获取新知。‎ ‎1.认识图形的放大 出示例1中两幅图片长和宽的数据。‎ 提问:两幅图的长有什么关系?宽呢?‎ 组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的 长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。‎ 指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。‎ 提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的比放大了?‎ ‎2.认识图形的缩小。‎ 谈话:我们可以把一个图形按一定的比放大,也可以把一个图形按一定的比缩小。 提问:如果要把第一幅图按1:2的比缩小,缩小后的长与宽各应是原来的几分之几?‎ 三、变式拓展,自主建构。‎ 教学例2‎ ‎1.出示例2,让学生读题 ‎(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?‎ ‎(2)学生画图,再展示、交流。‎ ‎(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思 考的方法。重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。‎ ‎2.讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?‎ 让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放 大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)‎ ‎3.教学“试一试”‎ 先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的? 提问:量一量,斜边的长也是原来的2倍吗?你发现什么?‎ 小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。‎ 四、当堂检测,评价反思。‎ ‎1.做“练一练”‎ 让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有 关边的长度是原来的几分之几,各应画几格?‎ ‎2.做练习六第1.2题。‎ 第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。 第2题先让学生独立完成,然后组织交流 ‎3.全课小结。‎ 什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?‎ 五、家庭作业 ‎《家庭作业》‎ 第二课时 图形的放大和缩小(二)‎ 教学内容:‎ 教科书第35页的例3,完成随后的练一练和练习六的第3—6题。‎ 教学目标:‎ ‎1.理解比例的意义。‎ ‎2.能根据比例的意义,正确判断两个比能否组成比例。‎ ‎3.在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。‎ 教学重难点:‎ 理解比例的意义,能正确判断两个比能否组成比例。‎ 教学过程:‎ 一、复习导入 ‎1.昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?‎ ‎2.关于比你有哪些了解?(生答:比的意义、各部分名称、基本质等。)还记得怎样求比 值吗?希望这些知识能对你们今天学习的新知识有帮助。‎ 二、教学比例的意义 ‎1.认识比例 ‎(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽 的比。‎ ‎(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把 它们分别化成最简比)‎ ‎(3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重 视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6数学中规定,像这样的式子就叫做比例。(板书:比例)‎ ‎(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)‎ ‎(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,‎ 就一定有两个比,且比值相等。‎ ‎2.学以致用 ‎(1)学习比例的意义有什么用呢?(可以判断两个比是否可以组成比例。)‎ ‎(2)分别写出照片放大后和放大前的长的比和宽的比,这两个比也能组成比例吗? 学 生独立完成,再说说是怎样想的?由此可以使学生对比例意义的丰富感知。‎ ‎(3)你能根据以上照片提供的数据,再写出两个比,并将它们组成比例吗?‎ 三、巩固练习 ‎1.做练一练,学生独立完成,再逐题说说判断的思考过程。‎ ‎2.做练习九第3题。‎ 先写出符合要求的比,再说清楚相应的两个比是否能够组成比例的理由。‎ ‎3.做练习九第4题 独立审题,说说解题步骤,在独立完成。同时找两个同学板演。‎ 四、全课小结。‎ 通过本课的学习,你有哪些收获?‎ 五、作业 练习九第5.6题。‎ 教学反思 第三课时 比例的基本性质 教学内容:教科书第38~39页例4,“试一试”和“练一练”,练习七第1~4题 教学目标:‎ 使学生认识比例的“项”以及“内项”和“外项”。 能力目标:理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。‎ 通过自主学习,让学生经历探究的过程,体验成功的快乐。‎ 教学重难点:‎ 引导观察,自主探究发现比例的基本性质 教学过程:‎ 一、基础训练,引入新知 ‎1. 昨天学习了什么内容?(比例)什么叫比例?‎ ‎2.判断下面每组中两个比能否组成比例?把组成的比例写出来。‎ ‎⑴ 3:5和18:30 ⑵ 0.4:0.2和1.8:0.9‎ ‎⑶ 5/8:1/4和7.5:3 ⑷ 2:8 和9:27‎ 学生独立完成,说说判断过程。‎ 二、探究体验,获取新知。‎ ‎1.教学比例各部分的名称 谈话过渡:现在我们已经知道了比例的意义、各部分名称,也知道了比例在生活中有 很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?‎ ‎2.出示例4 ‎ 提问:你能根据图中的数据写出比例吗?‎ ‎(1)引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。‎ ‎(2)引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?‎ 学生先独立思考,再小组交流,探究规律。‎ ‎(板书:两个外项的积等于两个内项的积。)‎ 验证:是不是任意一个比例都有这样的规律?‎ ‎⑴课件显示复习题(4组),学生验证。‎ ‎⑵学生任意写一个比例并验证。‎ 完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。 思考3/6=2/4是那些数的乘积相等。课件显示:交叉相乘。‎ 小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现 规律,再验证)‎ 三、变式拓展,自主建构。‎ 比例的基本性质的应用 ‎(1)比例的基本性质有什么应用?‎ ‎(2)做“试一试”‎ a先假设这两个比能组成比例 b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。‎ C、根据比例的基本性质判断组成的比例是否正确。‎ 四、当堂检测,评价反思。‎ ‎1.做“练一练”‎ ‎(1)学生尝试练习。‎ ‎(2)交流讨论。使学生明确:可以把四个数写成两个比,根据比值是否相等作出判 断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。‎ ‎2.在( )里填上合适的数。 1.5:3=( ):4 12:( )=( ):5‎ 先让学生尝试填写,再交流明确思考方法。‎ ‎3.做练习十第1.2题 五、家庭作业 《家庭作业》‎ 第四课时 解比例 教学内容:教科书第40页例5“试一试”和“练一练”,练习七第5~9题 教学目标:‎ 使学生学会解比例的方法 进一步理解和掌握比例的基本性质。‎ 进一步体会数学知识之间的联系,感受学习数学的乐趣。‎ 教学重难点:‎ 掌握解比例的书写格式。‎ 教学过程:‎ 一、基础训练,引入新知 教师:前面我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。‎ 二、探究体验,获取新知。‎ ‎1.出示例5‎ ‎(1)审题,帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?(放 大前后的相关线段的长度是可以组成比例的)‎ ‎(2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?引导学生写出 含有未知数的比例式。‎ 告诉学生:“像上面这样求比例中的未知项,叫做解比例。‎ ‎(3)讨论:怎样解比例?根据是什么?‎ ‎(4)思考:“根据比例的基本性质可以把比例变成什么形式?” 教师板书:6x=13.5×4。 “这变成了什么?”(方程。)‎ 教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在6x前加上“解:“)‎ ‎(5)让学生把解比例的过程完整地写出来。指名板书。‎ 三、变式拓展,自主建构。‎ 总结解比例的过程。‎ 提问:‎ ‎“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?”(先根 据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)‎ ‎“从上面的过程可以看出,在解比例的过程中哪一步是新知识?”(根据比例的基本性质把比例变成方程。)‎ ‎3.做“试一试”,学生独立完成,再说说解题思路。‎ 四、当堂检测,评价反思。‎ ‎1.做“练一练”‎ ‎2.做练习七第6.7题。先说说按比例“缩小或放大“的含义再列出相应的比例式并求解。‎ ‎3.做练习七第8.9题 学生独立审题并解题。讲评时重点指导学生解决第(2)问。‎ 五、小结:这节课你学到了什么?有什么体会?‎ 六、家庭作业:《家庭作业》‎ 教学反思:‎ 第五课时 认识比例尺 教学内容:教科书第43~44页例6和“练一练”,练习八第1.2题 教学目标:‎ 使学生在具体情境中理解理解比例尺的意义,能看懂线段比例尺。‎ 会求一幅图的比例尺,会把数值比例尺与线段比例尺进行转化。‎ 使学生在观察、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。‎ 教学重难点:‎ 使学生理解比例尺的含义,会求一幅图的比例尺。‎ 教学过程:‎ 一、基础训练,引入新知 谈话:同学们,我国历史悠久,地域辽阔,国土面积大约有960万平方千米。但这么辽阔的地域却可以用一张并不很大的纸画下来。‎ 出示大小不一的中国地图,并提问:想知道这些地图是怎样绘制出来的吗?今天我们就学习 这方面的知识——比例尺。 板书课题:比例尺 二、探究体验,获取新知。‎ ‎1.出示例6,在学生理解题意后提问:题目要求我们写出几个比?这两个比分别是哪 两个数量的比?什么是图上距离?什么是实际距离?‎ ‎2.探索写图上距离和实际距离的比的方法。‎ 提问:图上距离和实际距离单位不同,怎样写出它们的比?‎ 引导学生通过交流,明确方法:先要把图上距离和实际距离统一成相同的单位,写出比后再化简。‎ 学生独立完成后,展示、交流写出的比,强调要把写出的比化简。‎ ‎3.揭示比例尺的意义以及求比例尺的方法。‎ 谈话:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际 距离的比,叫做这幅图的比例尺。‎ 提问:这张长方形草坪平面图的比例尺是多少?‎ 启发:可以怎样求一幅图的比例尺呢?‎ 根据学生的回答,相机板书:‎ 图上距离:实际距离=比例尺 三、变式拓展,自主建构。‎ ‎4.进一步理解比例尺的实际意义,认识线段比例尺。‎ 提问:我们知道这幅图的比例尺是1:1000,也可以写成1/1000。1:1000的意思是 图上‎1厘米的线段表示实际距离‎1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。‎ 图上距离/实际距离=比例尺 指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样 的比例尺,通常叫做数值比例尺。比例尺1:1000还可以用下面这样的形式来表示。‎ 进一步指出:像这样的比例尺通常叫做线段比例尺。‎ 问:从这个线段比例尺来看,图上的‎1厘米表示实际距离多少米?图上的‎2厘米、‎3厘米分别表示实际距离多少米?这与1:1000的含义相同吗?‎ 四、当堂检测,评价反思。‎ ‎1.做“练一练”第1题。‎ 先说说每幅图中比例尺的实际意义。同样长的实际距离在哪幅图中画得长?哪幅图中 ‎1厘米的图上距离表示的实际距离长?‎ ‎2.做“练一练”第2题。让学生各自测量、计算,再交流思考过程。‎ ‎3.指出:‎ ‎①比例尺与一般的尺不同,这是一个比,不应带计量单位。‎ ‎②求比例尺时,前、后项的长度单位一定要化成同级单位。如 ‎2.5厘米:1O千米,要把后项的千米化成厘米后再算出比例尺。‎ ‎③‎ 为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。‎ 五、小结:这节课你学到了什么?有什么收获?‎ 六、家庭作业:《家庭作业》‎ 教学反思:‎ 第六课时 比例尺的应用 教学内容:教科书第44~45页例7.“试一试”和“练一练”,练习八第3~9题 教学目标:‎ 使学生理解线段比例尺含义。‎ 使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。‎ 在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。 教学重难点:‎ ‎1.能按给定的比例尺求相应的实际距离或图上距离。‎ ‎2.感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。 教学过程:‎ 一、基础训练,引入新知 ‎1.什么叫比例尺?求比例尺时要注意哪些问题?‎ ‎2.在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?‎ 二、探究体验,获取新知。‎ ‎1.教学例7。‎ ‎(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么, 要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)‎ ‎(2)说一说比例尺1:8000所表示的意义。‎ ‎(3)根据对1:8000的理解让学生尝试练习。‎ ‎(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。 重点 ‎ 引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?‎ 注意:最后的单位要换算成“米”作单位的数。‎ 三、变式拓展,自主建构。‎ 做“试一试”。‎ ‎(1)独立算出学校到医院的图上距离。‎ ‎(2)讨论怎样把医院的位置在图上表示出来。‎ ‎(3)在图中表示医院的位置。‎ 四、当堂检测,评价反思。‎ ‎1.做“练一练”先独立解题,再组织交流 ‎2.做练习八第4题 重点知道学生在地图上测两地之间的距离和在地图上如何找比 例尺。‎ ‎3.做练习八第5题。重点帮助学生确定合适的比例尺。在解决 问题的过程中,进一步体会比例以及比例尺的应用价值。‎ ‎4.将下列各题做在课堂作业本上。‎ ‎(1)北京到天津的距离是‎140千米,在一幅比例尺是1:2000000‎ 的地图上,两地间的距离是多少厘米?在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12。‎5厘米。甲、乙两城实际相距多少千米?‎ ‎ 0 40 80 ‎‎120千米 ‎(3)在一幅比例尺为的地图上,小丽量得某省会城市与北京的距离是‎32.5厘米。这个城市与北京相距多远?‎ ‎(4)做练习八第3题。‎ 五、小结:通过本课的学习,你又掌握了什么新的本领?‎ 六、家庭作业:《家庭作业》‎ 教学反思:‎ 第七课时 面积的变化 教学内容:教科书第48~49页 教学目标:‎ 使学生经历“猜测-验证”的过程中,自主发现按比例放大后面积的变化规律 应用面积的变化规律解决一些实际问题。‎ 使学生进一步体会比例的应用价值,提高学习数学的兴趣 教学重难点:‎ 探究平面图形按比例放大或者缩小后面积的变化规律 教学过程:‎ 一、基础训练,引入新知 ‎1.正方形面积的计算公式是什么?‎ ‎2.长方形面积的计算公式是什么?‎ ‎3.三角形面积的计算公式是什么?‎ ‎4.圆面积的计算公式是什么?‎ 二、探究体验,获取新知。‎ ‎1.出示教科书第48页上面的两个长方形 说明:大长方形是小长方形按比例放大后得到的。‎ ‎(1)请同学们分别量出两个长方形的长和宽,写出对应的边长之比 大长方形与小长 方形的比是():(),宽的比是():()‎ ‎(2)一个长方形的长和宽按比例放大后,它的面积发生变化吗?会发生怎样的变化呢?这节课我们一起来探究“面积的变化”,板书课题。‎ ‎(3)请同学们先估计一下,大长方形与小长方形的面积比是():(),再通过计算, 验证自己估计的对不对?‎ ‎(4)全班交流,使学生初步感知长方形按比例放大后面积的变化规律 ‎2.出示教科书48页下面的一组图形 说明:下面的图形是上面相对应的图形放大后得到的。‎ ‎(1)请同学们测量相关的数据进行计算,再填写下表,再填写教科书第49页上面的 表格 ‎(2)组织讨论:通过上面的计算和比较,你发现了什么?‎ ‎(3)小组交流 ‎(4)总结:把一个平面图形按N:1的比例放大后,放大后与放大前的面积比是? 启发学生进一步思考:如果把一个平面图形按指定的比例缩小,缩小前后图形面积的变化规律又是什么?‎ 三、变式拓展,自主建构。‎ 让学生选择第49页图中一幢建筑或一处设施,测量并计算它的实际占地面积。‎ 四、当堂检测,评价反思。‎ ‎1. 在比例尺是1:800的平面图上,有一块长方形的草地,长是‎3.5cm,宽是‎2cm,它的实际占地面积是多少?‎ ‎2.一块长方形运动场,长‎150米,宽‎80米。在一幅比例尺是1:250‎ 的平面图上,这块长方形运动场的面积是多大?‎ ‎4.在一幅比例尺是1:2000的世界图上,量得一个圆形花坛的直径是2厘米,它的实际面积是多大?‎ 五、小结:本节课你发现了什么规律?掌握了什么方法?‎ 六、家庭作业:《家庭作业》‎ 第五单元 确定位置 教材分析:‎ 本单元教学用方向和距离确定物体所在的位置。‎ 确定位置的教学很早就开始了。一年级用上下、左右、前后等方位词,表示物体之间的位置关系。如×在×的上面、×的右边是×。二年级用东、南、西、北,东南、东北、西南、西北等方向词描述物体所在的位置。如×的正北方有×,×在×的东北方向。这些表示和描述只是指出了物体的大致位置,不够准确。本单元继续教学确定位置,把方向和距离结合起来,准确地描述物体所在的位置。全单元编排三道例题,具体安排见下表:‎ 例1用方向和距离表示位置的知识 例2在平面图上用方向和距离表示物体的位置 例3描述行走的路线 从方向与距离两个方面确定物体所在的位置,要联系已有的认识方向的经验,教学一些新的方向词语;还要应用量角和画角、量线段和画线段的方法,以及比例尺的知识。由于涉及的知识技能比较多,教学可能会有一定难度。但学生能进一步了解方向、体会距离,有利于发展空间观念。他们综合应用数学知识、技能解决问题,相应的能力会有明显的提高。‎ 教学目标:‎ ‎1.学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,掌握用方向和距离确定物体位置的方法。‎ ‎2.在用方向和距离确定物体位置的过程中,进一步培养学生的观察能力、识图能力和有条理地进行表达的能力,发展空间观念。‎ ‎3.能根据给定的方向和距离在平面图上确定物体的位置或描述简单的行走路线。‎ ‎4.积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。‎ 教学重、难点:初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单行走路线。‎ 课时安排:3课时 第一课时:用方向和距离确定位置(1)‎ 教学内容:教材第50页的例1,第51页的 “练一练”,完成练习九第1~3题。‎ 教学目标:‎ ‎1.在具体情境中初步理解北偏东(西)、南偏东(西)的含义,会用方向和距离描述物体的位置,初步感受用方向和距离确定物体位置的科学性。‎ ‎2.经历用方向和距离描述物体位置的方法的探究过程,进一步培养学生观察、识图和有条理地进行表达的能力,发展空间观念。‎ ‎3.进一步体验数学与生活的密切联系,增强用数学的眼光观察日常生活现象和解决日常生活问题的意识。 教学重点:初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置。 教学难点:确定物体位置的方向。‎ 教学资源:课件、铅笔、直尺、量角器 教学过程:‎ 一、情境导入 ‎1.谈话:请同学们回忆一下,我们已经学习了哪些确定位置的知识?(东南西北,第几排第几个,数对等)‎ ‎2.如果一个物体处在没有竖列没有横行的环境中,比如在海上、空中,又用什么方式确定位置呢?今天这节课,我们就继续来研究确定位置的方法。‎ 二、互动新授 ‎1.用方向描述物体的位置。‎ ‎(1)教学北偏东(西)、南偏东(西)‎ ‎①出示第50页例1的情境图。‎ 提问:一艘轮船在正北方向航行,你能说出灯塔1和灯塔2分别在轮船的什么方向吗?‎ 学生用学过的东北、西北来描述灯塔1和灯塔2的位置。‎ 引导明确:东北方向也叫北偏东,西北方向也叫北偏西。‎ ‎②拓展:请同学们想一想,东南、西南方向又叫作什么方向?‎ 学生思考后回答:东南方向也叫作南偏东,西南方向也叫作南偏西。‎ ‎③下面我们来比比谁的手指快。‎ 教师说方向,学生在图中指一指。‎ ‎(2)教学用角度确定位置。‎ ‎①如果老师现在告诉苏我你还有一个灯塔A也在北偏东方向,你能在图中指一指吗?‎ 请多个学生上黑板指一指。‎ 明确:只要指在北和东的夹角范围内的都符合老师的要求。‎ 提问:如果灯塔1和灯塔A都在轮船的北偏东方向,但是位置却不同,我们该怎么区分它们呢?‎ 引导学生思考:可以根据它们偏离角度的不同来区分。‎ ‎②问:怎样测量灯塔1和正北方向偏离的角度呢? 0课件演示并强调:量角器的中心对准观测点,0刻度线对准轮船的正北方向,观察灯塔1所在的边,读出度数。 学生先在图上量一量灯塔1偏离正北方向的角度,说出度数,然后在书中填一填。‎ ‎2.用距离确定物体的位置。‎ ‎0(1)提问:是不是知道灯塔1在北偏东30方向就能把它具体位置确定下来了呢? 00课件演示:画出北偏东30这条射线,并提问:这条射线上的点都在北偏东30方向,哪个点是灯塔1的位置呢?还需要知道什么?‎ 学生分小组讨论。‎ 明确:看来,要想准确地描述灯塔1的位置,仅有方向还不够,还需要说清楚距离。‎ 学生根据所给的条件,测量灯塔1到轮船的图上距离,计算出实际距离:‎ 图上距离‎3厘米 3×10=20(千米)学生汇报:灯塔1在轮船的北偏东30方向‎30千米处。‎ ‎3.小结:通过刚才的学习,我们知道要确定物体的精确位置需要具备两个要素,即方向和距离。‎ 三、巩固练习 ‎1.做第51页“练一练”。‎ 提问:(1)本题中以哪儿为观测点?‎ ‎(2)要求灯塔2在轮船的什么位置,需要测量哪些数据?‎ ‎(3)如何求出灯塔2到轮船的实际距离?‎ 学生在小组交流,动手测量,完成计算。‎ ‎2.练习九第1题。‎ 提醒:这道题内容比较多,要仔细读题,弄清题意,明确题目要求。‎ 提问:(1)图中以机场所在地点为端点,向四周画出了许多射线,每相邻的两条射线的夹角是多少度? ‎(2)“每相邻两个圆之间的距离是‎10千米”这句话是什么意思?‎ ‎(3)飞机A在屏幕上的位置是怎样确定的?‎ 学生读题,理解题意,回答问题。‎ 独立完成填空。‎ 四、全课小结:‎ ‎1.今天我们再次研究了确定位置。今天学习的确定位置,需要具备哪些条件?‎ ‎2.描述位置方法有很多,课前大家说了很多,课上又学了一种。不同的情况,根据不同的需要,可以选择不同的描述方法。‎ 五、课堂作业:练习九第2.3题 板书设计:‎ 用方向和距离确定位置 东北方向:北偏东 西北方向:北偏西 东南方向:南偏东 西南方向:南偏西 确定物体的精确位置的两个要素:方向和距离 第二课时:用方向和距离确定位置(2)‎ 教学内容:教科书第51页的例2和“练一练”,完成练习九的第4~6题。‎ 教学目标:‎ ‎1.根据实际的方向和距离,在平面图上表示出相应的位置。‎ ‎2.使学生经历描述和画物体具体方向和距离的过程,进一步培养观察能力。‎ ‎3.使学生体验数学与生活的密切联系,进一步增强用数学眼光观察日常生活现象,解决日常生活问题的意识。 教学重点:根据实际的方向和距离,在平面图上表示出相应的位置。‎ 教学难点:根据描述确定不同物体的位置。‎ 教学资源:课件、铅笔、直尺、量角器 教学过程:‎ 一、复习引入 ‎1.课件出示以黎明岛为中心的平面图。‎ ‎(1)以黎明岛为中心,黎明岛的上、下、左、右分别表示什么方向?‎ 随机指出:东——E 南——S 西——W 南——S ‎(2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。‎ ‎2.如果知道黎明岛北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。‎ 二、互动新授 ‎1.明确清凉岛的位置。‎ ‎(1)题目中告诉我们清凉岛在哪里?‎ ‎(2)你能在图上指一指清凉岛的大致位置吗?‎ 自己在图上指出来,并和同学交流一下。‎ ‎2.探究操作。‎ ‎(1)怎么在图上画出清凉岛的位置呢?‎ 在小组中讨论后全班交流。‎ 使学生认识到要先画出表示方向的射线,再确定灯塔到清凉岛的图上距离。‎ ‎(2)怎么画出北偏东40°的射线?‎ 各自用量角器在图上画一画,边画边思考:应该怎么摆放量角器,怎么看量角器上的度数?‎ 指名上黑板画,注意引导学生正确摆放量角器。‎ 让学生说说画表示方向的射线时要注意什么?‎ ‎(3)怎么确定灯塔到清凉岛的距离?‎ 图中告诉我们这幅图的比例尺是多少?表示什么意思?‎ 清凉岛在北偏东40°方向‎20千米处,图中清凉岛的位置在灯塔处沿北偏东40°方向的射线几厘米的地方?怎么想?‎ 各自计算后指名汇报:20÷5=4(厘米)‎ 追问:为什么用20÷5就是图上距离了?‎ 引导学生在图上标出清凉岛的位置,并与同学交流。‎ ‎3.练一练 ‎(1)出示题目要求:在黎明岛南偏西30°方向‎30千米处是红枫岛,你能在图中表示出它们的位置吗?‎ ‎(2)各自独立完成。‎ ‎(3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。‎ 三、巩固练习 ‎1.练习九第4题。‎ 学生独立计算。‎ ‎2.练习九第5题。‎ ‎(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?‎ 自己先算一算实际距离,然后与同座位的同学说一说。‎ 汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?‎ 孔雀园呢?‎ 引导学生说出:熊猫馆在猴山北偏西60°方向‎120米处。孔雀园在猴山南偏东35°方向‎90米处。‎ ‎(2)蛇馆在猴山南偏西45°方向‎150米处。怎么在图上表示出它的位置。‎ 各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。‎ 练习后交流思考的方法和具体的画法。‎ ‎3.练习九第6题。‎ 师:同学生欣赏过跳伞运动员跳伞吗?(出示题图) 你能完成上面的问题吗?‎ 学生练习。‎ 四、全课小结:‎ 谁能告诉大家你今天学到了什么知识?有什么发现?还有什么疑问?‎ 引导总结:本节课我们学习了在平面图上标出物体位置的方法。在画图时,要先用量角器确定物体的方向,再确定图上距离,最后画好距离,并标出名称。‎ 五、课堂作业:基础训练。‎ 第三课时:描述简单的行走路线 教学内容:教科书第52页的例3和“练一练”,完成练习九的第7~10题。‎ 教学目标:‎ ‎1.使学生学会根据平面图运用所学的确定位置的知识和方法描述简单的行走路线。‎ ‎2.使学生进一步体会用方向和距离确定物体位置这一方法的应用价值,增强用数学方法描述现实世界中空间关系的意识和能力 教学重点:根据方向和实际距离在平面图上确定物体的位置。‎ 教学难点:运用确定位置的知识和方法描述简单的行走路线。‎ 教学资源:课件、相关平面图、铅笔、直尺、量角器 教学过程:‎ 一、谈话引入 提问:同学们你们平时是怎么来学校的?如果老师要从学校去你家,你能告诉老师怎么走吗?谁来说一说? 学生说说从学校到家的路线。‎ 谈话:通过同学们的叙述,有些同学的家老师知道怎么走了,因为他表达地很清楚,有些同学的家 老师还不知道怎么走,但是没有关系,通过这节课的学习,相信你会让老师根据你的叙述找到你家的。(板书课题:描述简单的行走路线)‎ 二、互动新授 ‎1.出示第52页例3,尝试描述行走路线。‎ 师:这是李伟家附近部分街道的平面图。请你仔细观察,从图中你你找到哪些数学信息?‎ 学生可能这样回答:‎ ‎(1)李伟家附近有超市、街心花园、医院、敬老院。‎ ‎(2)大港小学在敬老院的北面。‎ ‎(3)医院在超市北偏东60度‎240米处。‎ ‎……‎ 教师让学生尽可能的说全图中的位置关系。‎ 师:同学们从图中找出了这么多的数学信息,那么你能说说李伟从家到大港小学行走的方向和路程吗?‎ 学生交流。‎ 汇报预设:‎ 生1:先向东走到超市,左拐经过展览馆走到书店,再右拐走到学校。‎ 生2:先向东走到超市,再向北走到书店,再向东走到大港小学。‎ 生3:先向东走到超市,再向东北方向走到医院,再向北走到大港小学。‎ 生4:先向东走到超市,再向北偏东方向走到医院,再向北走到大港小学。‎ 师:你能看图再说说医院在大港小学的什么位置吗?‎ 超市在医院的什么位置?‎ ‎(1) 自己说一说。‎ ‎(2) 在小组中说一说,小组中的成员相互更正。‎ ‎(3) 全班汇报交流。‎ 指名一人汇报后,全班评议:好在什么地方?什么地方需要修改?‎ 注意:汇报交流时,允许有不同的叙说方式。‎ ‎2.说说李伟放学回家的行走路线。(练一练)‎ ‎(1)你想怎么说,各自说说看。‎ ‎(2)在小组中说一说,小组中的成员进行评议。‎ ‎(3)全班汇报交流。‎ 三、巩固练习 ‎1.练习九第7题。‎ 学生独立计算。‎ ‎2.练习九第8题。‎ 出示李家桥小学的平面图,让学生尝试描述行走路线。‎ ‎3. 练习九第9题。‎ ‎(1)出示第9题的平面图。‎ 指出:这是某地5路公共汽车的行驶路线图。‎ ‎(2)看图说说,5路公共汽车经过哪几个地方?‎ ‎(3)你能说出5路公共汽车的行驶线路吗?‎ 各自练习后,在小组中说一说,再引导在全班交流。‎ 四、拓展练习(练习九第10题)‎ 学校在你家的什么方向?从你家上学,途中要经过哪些有明显标志的地方?你能说出你上学的路线吗?‎ 五、全课小结: ‎ 引导总结:我们在描述简单的行走路线的时候要说清楚方向,有距离的还要说清距离,途中各点要逐个描述,做到不重复、不遗漏。‎ 六、课堂作业:基础训练。‎ 教学反思:‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料