四年级数学下册《四则运算》教学设计(一)教学目标1.使学生掌握含有两级运算的运算顺序,正确计算三步式题。2.让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两三步计算的方法解决一些实际问题。3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。(二)教材说明和教学建议教材说明1.本单元的内容结构及其地位作用。本单元主要教学并梳理混合运算的顺序。混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道小括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。具体安排如下:2.本单元教材的编写特点。(1)解决问题与四则混合运算顺序的梳理有机结合起来。本单元在整理混合运算顺序时,是结合解决问题进行的。目的是使学生在解决一个个实际问题的过程中,进一步掌握分析解决问题的策略和方法,同时体会运算顺序规定的必要性,从而系统地掌握混合运算的顺序。(2)为学生提供自主探索与合作交流的情境和空间。本单元是从解决问题的角度教学整理四则混合运算的顺序,其中的问题是需要两三步计算解决的问题。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考,主动解决问题。教学建议1.将探求解题思路过程与理解运算顺序有机结合起来。本单元是让学生在经历解决问题的过程中,感受混合运算顺序规定的必要性,掌握混合运算的顺序。因此,教学时,要充分利用教材提供的生动情境,放手让学生独立思考,自主探索,并在合作交流的基础上形成解决问题的步骤和方法,先求什么?用什么方法计算?再求什么?又用什么方法计算?最后求什么?用什么方法计算?使解题的步骤与运算的顺序结合起来。当学生列出综合算式后,还要追问每步算式列出的依据及表示的实际意义,促进学生正确地概括出混合运算的运算顺序。2.帮助学生逐步掌握解决问题的步骤和策略。本单元混合运算的顺序是结合解决问题进行的,其中解决问题的步骤和策略又是重点和难点之一。教学时,要注意加强数量关系的分析,在叙述解题思路时,要引导学生透过数看到量,用量的关系来描述解题思路。如,可引导学生这样描述思路“先算出每天接待多少人,再计算6天接待多少人”。不要停留在“先用987÷3,再乘6”的描述方式上。可能开始时学生不习惯,但要逐步培养这种分析方法。3.本单元内容可以用6课时进行教学。(三)具体内容的说明和教学建议(第2~16页)1.主题图。编写意图主题图“冰雪天地”为学生展示了雪地里活动的场景。从活动区域指示牌上可以看出滑雪区、滑冰区和冰雕区,场景图中还给出了三条信息:滑冰区有72人,滑雪区有26人,冰雕区有180人。给学生提问题提供了数据。教学建议教学时出示主题图后,可以开展以下两项活动:(1)说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?(2)根据图中提供的信息,你能提出哪些问题,怎么解决?学生提出的问题可以先在小组里交流,然后在班上交流。交流时,学生可能只说出问题,丢掉相关的条件,这时教师要引导学生完整地表述条件和问题,让学生感受数学问题的整体性。另外,学生提出的问题可能用一步计算解决的,也可能用两步或两步以上计算解决的,只要合理,教师都要给予肯定。在学生广泛提出问题的基础上,再引出例1。2.例1。编写意图(1)例1通过应用加减法知识解决两步计算的实际问题,来明确加减混合运算的顺序。(2)教材以主题图“冰雪天地”的“滑冰区”为背景,提供了一天上、下午滑冰人数的变化信息,提出“现在有多少人在滑冰”的问题。由于学生积累了较为丰富的解决此类问题的生活经验和知识经验,教材中呈现了两个学生的解决方法,一个是分步列式解答的,另一个是列综合算式解答的,通过计算使学生理解加减混合运算顺序,是按从左到右的顺序进行计算。教学建议(1)出示例1后,可以放手让学生独立思考、尝试解答,并能与同伴说说自己是怎样想的?(2)组织反馈,并在全班交流,主要交流自己的解题思路,根据是什么?每步算式表示什么意义?然后从思路上对比分步列式和综合算式,使学生明确它们都是用加减法两步运算解决问题,并进一步明确加减混合运算要按从左往右的顺序计算。(3)以小组合作的方式,让学生根据自己日常生活经验,编出一些类似例1的实际问题,如乘公交车时的“上车下车”,学校图书室的“借书还书”等等,使学生在用加减两步运算解决问题的过程中,巩固加减混合运算的运算顺序。3.例2及“做一做”。编写意图(1)教材以“冰雪天地”接待游人的信息为素材,通过解决“6天预计接待多少人?”引导学生观察所列混合算式,明确乘除混合运算的顺序。在例1、例2的基础上,教材总结出:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要按从左往右的顺序计算。(2)解决“6天预计接待多少人?”教材呈现了学生的两种不同解法,一种是先求出平均每天接待的人数,再求6天一共接待的人数;另一种是先算出6天里有几个3天,再用算出的结果去乘3天接待的人数。这样编排目的是鼓励学生积极思考独立解决问题。(3)“做一做”的第2题是配合例2的练习,其中解决问题所需的一个条件“12瓶”隐含图中的箱子上。教学建议(1)在学生读题后,让学生尝试说一说自己是怎样理解“照这样计算”一句话的含义。同桌的相互说一说,再组织在班上交流,使每个学生明白“照这样计算”的意思是每天接待的人数,按“3天接待987人”计算。(2)引导学生画线段图表示相应的数量关系。由于学生已有一些画线段图的基础,教学时可以提出以下问题:①3天接待987人怎样用线段图表示出来?②6天里接待多少人?又怎样用线段图表示?让学生尝试画一画,并组织交流。对画图有困难的学生教师要给予指导,然后让学生把自己的线段图画在黑板上,引导学生评价,特别是评价表示6天接待人数的线段的长短。因为它直观形象地表示出第二种解法的数量关系,在画图的基础上让学生探索解决问题的方法。(3)要重视解题过程的反思。当学生独立尝试解决后,要让学生说说解题思路和每一步计算结果所表示的实际意义,如987÷3=329表示平均每天接待的人数,6÷3=2表示6天里含有两个3天即两个987人,等等。(4)在比较例1与例2的基础上,让学生总结出在没有括号的算式里只有加减法或只有乘除法的运算顺序。4.例3及“做一做”。编写意图(1)例3通过解决需用三步计算的实际问题,教学“积商之和(差)的混合运算”。(2)教材以星期天玲玲一家三口去“冰雪天地”游玩购买门票为解决问题的现实背景。先通过解决“购门票需要花多少钱”,来总结“在没有括号的算式里,既有加减法又有乘除法的混合运算”的顺序。然后再提出“你还能解决其他数学问题吗?”鼓励学生根据情境中给出的门票信息,提出问题并加以解答。同时根据上面总结出的混合运算的运算顺序尝试列综合算式进行解答,以进一步掌握混合运算的顺序。(3)“做一做”第1题有三组题,每组题中上、下两题参与运算的数和排列顺序都相同,只是运算符号不同,有的是同级运算,有的是两级运算,让学生通过判断其运算顺序是否相同巩固混合运算的运算顺序,逐步养成认真审题的习惯。