小升初数学必考知识点汇总:数与代数
第一部份 数与代数
(一)数的认识
整数【正数、0、负数】
一、一个物体也没有,用 0 表示。0 和 1、2、3……都是自然数。自然数是整数。
二、最小的一位数是 1,最小的自然数是 0。
三、零上 4 摄氏度记作+4℃;零下 4 摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4
也可以写成 4。
四、像 +4、19、+8844 这样的数都是正数。像-4、-11、-7、-155 这样的数都是负数。
五、0 既不是正数,也不是负数。正数都大于 0,负数都小于 0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。小数【有限小数、无限小数】
一、分母是 10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小
数表示百分之几,三位小数表示千分之几……
二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之
一……都是计数单位。每相邻两个计数单位间的进率都是 10。
三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,
百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数
的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1 先要弄清保留几位小数;2 根据需要确定看哪一位上的数;3
用“四舍五入”的方法求得结果。
九、整数和小数的数位顺序表:
分数【真分数、假分数】
一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
二、两个数相除,它们的商可以用分数表示。即:a÷b=b/a(b≠0)
三、小数和分数的意义可以看出,小数实际上就是分母是 10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。真分数小于 1。
六、分子大于或等于分母的分数叫做假分数。假分数大于或等于 1。
七、分子和分母只有公因数 1 的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不
变。
九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】
一、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分
数通常用“%”表示。
二、分数与百分数比较:
不同点
相同点分 数
可以表示具体数量,可以有单位名称
表示两个数之间的关系
百分数
不可以表示具体数量,不可以有单位名称
三、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是 10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成
百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
四、熟记常用三数的互化。五、
1、出勤率表示出勤人数占总人数的百分之几。
2、合格率表示合格件数占总件数的百分之几。
3、成活率表示成活棵数占总棵数的百分之几。
六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几
八、应得利息是税前利息,实得利息是税后利息。
九、利息 = 本金 × 利率 × 时间
十、应得利息 -利息税 = 实得利息
十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
十二、
1、原价×折扣=现价
2、现价÷原价=折扣
3、现价÷折扣=原价十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
一、4 × 3 = 12,12 是 4 的倍数,12 也是 3 的倍数,4 和 3 都是 12 的因数。
二、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
三、一个数最小的因数是 1,最大的因数是它本身。一个数因数的个数是有限的。
四、5 的倍数:个位上的数是 5 或 0。
2 的倍数:个位上的数是 2、4、6、8 或 0。2 的倍数都是双数。
3 的倍数:各位上数的和一定是 3 的倍数。
五、是 2 的倍数的数叫做偶数。不是 2 的倍数的数叫做奇数。
六、一个数,如果只有 1 和它本身两个因数,这样的数就叫做素数(或质数)。
七、一个数,如果除了 1 和它本身还有别的因数,这样的数就叫做合数。
八、在 1—20 这些数中: (1 既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。素数:2、3、5、7、11、13、17、19。(共 8 个,和为 77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共 11 个,和为 132。)
九、最小的奇数是 1,最小的偶数是 0,最小的素数是 2,最小的合数是 4。
十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。
十一、如果两个数只有公因数 1,则最大公因数是 1,最小公倍数是它们的乘积。
(二)数的运算
计算法则【整数、小数、分数】
一、计算整数加、减法要把相同数位对齐,从低位算起。
二、计算小数加、减法要把小数点对齐,从低位算起。
三、小数乘法:1、先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边
起数出几位,点上小数点。
2、注意:在积里点小数点时,位数不够的,要在前面用 0 补足。
四、小数除法:
1、商的小数点要和被除数的小数点对齐;
2、有余数时,要在后面添 0,继续往下除;3、个位不够商 1 时,要在商的整数部分写 0,点上小数点,再继续除。
4、把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。
5、当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用 0 补足。
五、一个小数乘 10、100、1000……只要把这个小数的小数点向右移动一位、两位、三
位……
六、一个小数除以 10、100、1000……只要把这个小数的小数点向左移动一位、两位、三
位……
七、分数加、减法:1 同分母分数相加减,把分子相加减,分母不变。2 异分母分数相加减,
要先通分化成同分母分数,然后再相加减。
八、分数大小的比较:1 同分母分数相比较,分子大的大,分子小的小。2 异分母的分数相
比较,先通分然后再比较;若分子相同,分母大的反而小。
九、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
十、甲数除以乙数(0 除外),等于甲数乘乙数的倒数。
四则运算关系
加法
一个加数 = 和-另一个加数减法
被减数 = 差 + 减数
减数 = 被减数 - 差
乘法
一个因数 = 积 ÷ 另一个因数
除法
被除数 = 商 × 除数
除数 = 被除数 ÷ 商
两个规律
一、除法的商不变规律:被除数和除数同时乘或除以相同的数(0 除外),商不变。
二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。
简便计算
一、运算定律:
运算定律用字母表示
加法交换律
a+b=b+a
加法结合律
(a+b)+c=a+(b+c)
乘法交换律
a×b=b×a
乘法结合律
(a×b)×c=a×(b×c)
乘法分配律
(a+b)×c=a×c+b×c
减法运算规律
a-b-c=a-(b+c)
除法运算规律a÷b÷c=a÷(b×c)
二、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)
(1)A÷0.1=A×10
(2)A×0.1=A÷10
(7)A÷0.01=A×100;
(8)A×0.01=A÷100
(3)A÷0.2=A×5
(4)A×0.2=A÷5
(9)A÷0.25=A×4
(10)A×0.25=A÷4
(5)A÷0.5=A×2
(6)A×0.5=A÷2
(11)A÷0.125=A×8
(12)A×0.125=A÷8三、求近似数的方法。
①四舍五入法。 ②进一法。 ③去尾法。
四、积与因数、商与被除数的大小比较:
第 2 个因数>1,积>第 1 个因数;
第 2 个因数=1,积=第 1 个因数;
第 2 个因数