高一数学人教A版必修一精品教案:1.3.1函数的奇偶性 Word版含答案.doc
加入VIP免费下载

高一数学人教A版必修一精品教案:1.3.1函数的奇偶性 Word版含答案.doc

ID:108700

大小:46.27 KB

页数:3页

时间:2020-09-14

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
课题:§1.3.2 函数的奇偶性 教学目的:(1)理解函数的奇偶性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)学会判断函数的奇偶性. 教学重点:函数的奇偶性及其几何意义. 教学难点:判断函数的奇偶性的方法与格式. 教学过程: 一、引入课题 1.实践操作:(也可借助计算机演示) 取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形, 然后按如下操作并回答相应问题: ○1 以 y 轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹, 然后将纸展开,观察坐标系中的图形; 问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数 y=f(x) 的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特 殊的关系? 答案:(1)可以作为某个函数 y=f(x)的图象,并且它的图象关于 y 轴对称; (2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上, 即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. ○2 以 y 轴为折痕将纸对折,然后以 x 轴为折痕将纸对折,在纸的背面(即第三象限) 画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形: 问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数 y=f(x) 的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特 殊的关系? 答案:(1)可以作为某个函数 y=f(x)的图象,并且它的图象关于原点对称; (2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上, 即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数. 2.观察思考(教材 P39、P40 观察思考) 二、新课教学 (一)函数的奇偶性定义 象上面实践操作○1 中的图象关于 y 轴对称的函数即是偶函数,操作○2 中的图象关于原点 对称的函数即是奇函数. 1.偶函数(even function) 一般地,对于函数 f(x)的定义域内的任意一个 x,都有 f(-x)=f(x),那么 f(x)就叫做偶函 数. (学生活动):仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function) 一般地,对于函数 f(x)的定义域内的任意一个 x,都有 f(-x)=f(x),那么 f(x)就叫做奇函 数. 注意: ○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任 意一个 x,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称).(二)具有奇偶性的函数的图象的特征 偶函数的图象关于 y 轴对称; 奇函数的图象关于原点对称. (三)典型例题 1.判断函数的奇偶性 例 1.(教材 P36 例 3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶 性.(本例由学生讨论,师生共同总结具体方法步骤) 解:(略) 总结:利用定义判断函数奇偶性的格式步骤: ○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定 f(-x)与 f(x)的关系; ○3 作出相应结论: 若 f(-x) = f(x) 或 f(-x)-f(x) = 0,则 f(x)是偶函数; 若 f(-x) =-f(x) 或 f(-x)+f(x) = 0,则 f(x)是奇函数. 巩固练习:(教材 P41 例 5) 例 2.(教材 P46 习题 1.3 B 组每 1 题) 解:(略) 说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶 性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数. 2.利用函数的奇偶性补全函数的图象 (教材 P41 思考题) 规律: 偶函数的图象关于 y 轴对称; 奇函数的图象关于原点对称. 说明:这也可以作为判断函数奇偶性的依据. 巩固练习:(教材 P42 练习 1) 3.函数的奇偶性与单调性的关系 (学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函 数和偶函数的单调性具有什么特殊的特征. 例 3.已知 f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数 解:(由一名学生板演,然后师生共同评析,规范格式与步骤) 规律: 偶函数在关于原点对称的区间上单调性相反; 奇函数在关于原点对称的区间上单调性一致. 三、归纳小结,强化思想 本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法, 用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性 与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶 性这两个性质. 四、作业布置 1. 书面作业:课本 P46 习题 1.3(A 组) 第 9、10 题, B 组第 2 题. 2.补充作业:判断下列函数的奇偶性: ○1 ; 1 22)( 2 + += x xxxf○2 ; ○3 ( ) ○4 3. 课后思考: 已知 是定义在 R 上的函数, 设 , ○1 试判断 的奇偶性; ○2 试判断 的关系; ○3 由此你能猜想得出什么样的结论,并说明理由. xxxf 2)( 3 −= axf =)( Rx∈    + −= )1( )1()( xx xxxf .0 ,0 < ≥ x x )(xf 2 )()()( xfxfxg −+= 2 )()()( xfxfxh −−= )()( xhxg 与 )()(),( xfxhxg 与

资料: 4978

进入主页

人气:

10000+的老师在这里下载备课资料