由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时跟踪检测(二) 独立性检验的基本思想及其初步应用
层级一 学业水平达标
1.以下关于独立性检验的说法中, 错误的是( )
A.独立性检验依赖于小概率原理
B.独立性检验得到的结论一定准确
C.样本不同,独立性检验的结论可能有差异
D.独立性检验不是判断两事物是否相关的唯一方法
解析:选B 根据独立性检验的原理可知得到的结论是错误的情况是小概率事件,但并不一定是准确的.
2.观察下列各图,其中两个分类变量之间关系最强的是( )
解析:选D 在四幅图中,D图中两个阴影条的高相差最明显,说明两个分类变量之间关系最强,故选D.
3.在列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( )
A.与 B.与
C.与 D. 与
解析:选C 由等高条形图可知与的值相差越大,|ad-bc|就越大,相关性就越强.
4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( )
A.k越大,“X与Y有关系”的可信程度越小
B.k越小,“X与Y有关系”的可信程度越小
C.k越接近于0,“X与Y没有关系”的可信程度越小
D.k越大,“X与Y没有关系”的可信程度越大
解析:选B K2的观测值k越大,“X与Y有关系”的可信程度越大.因此,A、C、D都不正确.
5.考察棉花种子经过处理跟生病之间的关系得到下表数据:
种子处理
种子未处理
总计
得病
32
101
133
不得病
61
213
274
总计
93
314
407
根据以上数据,可得出( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.种子是否经过处理跟是否生病有关
B.种子是否经过处理跟是否生病无关
C.种子是否经过处理决定是否生病
D.以上都是错误的
解析:选B 由K2=≈0.164<2.706,即没有把握认为是否经过处理跟是否生病有关.
6.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(填“有关”或“无关”)
解析:∵K2的观测值k=27.63,∴k>10.828,∴在犯错误的概率不超过0.001的前提下认为打鼾与患心脏病是有关的.
答案:有关
7.如果根据性别与是否爱好运动的列联表得到K2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________.
解析:∵P(K2≥3.841)≈0.05.
∴判断性别与是否爱好运动有关,出错的可能性不超过5%.
答案:5%
8.统计推断,当________时,在犯错误的概率不超过0.05的前提下认为事件A与B有关;当________时,认为没有充分的证据显示事件A与B是有关的.
解析:当k>3.841时,就有在犯错误的概率不超过0.05的前提下认为事件A与B有关,当k≤2.706时认为没有充分的证据显示事件A与B是有关的.
答案:k>3.841 k≤2.706
9.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.
(1)根据以上数据列出2×2列联表;
(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗?为什么?
解:(1)由已知可列2×2列联表:
患胃病
未患胃病
总计
生活规律
20
200
220
生活不规律
60
260
320
总计
80
460
540
(2)根据列联表中的数据,由计算公式得K2的观测值
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
k=≈9.638.
∵9.638>6.635,
因此,在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关.
10.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球
不喜爱打篮球
合计
男生
a
b=5
女生
c=10
d
合计
50
已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关;请说明理由.
附参考公式:K2=,其中n=a+b+c+d.
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
解:(1)列联表补充如下:
喜爱打篮球
不喜爱打篮球
合计
男生
20
5
25
女生
10
15
25
合计
30
20
50
(2)∵K2=≈8.333>7.879,
∴有99.5%的把握认为喜爱打篮球与性别有关.
层级二 应试能力达标
1.在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性中有1 560名持反对意见,2 452名女性中有1 200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力( )
A.平均数与方差 B.回归直线方程
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.独立性检验 D.概率
解析:选C 由于参加调查的人按性别被分成了两组,而且每一组又被分成了两种情况,判断有关与无关,符合2×2列联表的要求,故用独立性检验最有说服力.
2.对于独立性检验,下列说法正确的是( )
A.K2>3.841时,有95%的把握说事件A与B无关
B.K2>6.635时,有99%的把握说事件A与B有关
C.K2≤3.841时,有95%的把握说事件A与B有关
D.K2>6.635时,有99%的把握说事件A与B无关
解析:选B 由独立性检验的知识知:K2>3.841时,有95%的把握认为“变量X与Y有关系”;K2>6. 635时,有99%的把握认为“变量X与Y有关系”.故选项B正确.
3.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验( )
A.H0:男性喜欢参加体育活动
B.H0:女性不喜欢参加体育活动
C.H0:喜欢参加体育活动与性别有关
D.H0:喜欢参加体育活动与性别无关
解析:选D 独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时的K2应该很小,如果K2很大,则可以否定假设,如果K2很小,则不能够肯定或者否定假设.
4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”,得到如下的列联表:
做不到“光盘”
能做到“光盘”
男
45
10
女
30
15
由此表得到的正确结论是( )
A.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”
B.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”
C.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”
D.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”
解析:选C 由2×2列联表得到a=45,b=10,c=30,d=15.
则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
代入K2=,得K2的观测值k=≈3.030.因为2.7063.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.
(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.
(其中ai表示喜欢甜品的学生,i=1,2.bj表示不喜欢甜品的学生,j=1,2,3)Ω由10个基本事件组成,且这些基本事件的出现是等可能的.
用A表示“3人中至多有1人喜欢甜品”这一事件,则
A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.
事件A是由7个基本事件组成,因而P(A)=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费