由莲山课件提供http://www.5ykj.com/ 资源全部免费
第4讲 随机事件的概率
1.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为( )
A.两个任意事件 B.互斥事件
C.非互斥事件 D.对立事件
解析:选B.因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.故选B.
2.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( )
A.0.3 B.0.5
C.0.8 D.0.7
解析:选D.由互斥事件概率加法公式知,
重量大于40克的概率为1-0.3-0.5=0.2.
又因为0.5+0.2=0.7,
所以重量不小于30克的概率为0.7.
3.从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是( )
A. B.
C. D.
解析:选C.“取出的2个球全是红球”记为事件A,则P(A)=.因为“取出的2个球不全是红球”为事件A的对立事件,所以其概率为P(A)=1-P(A)=1-=.
4.甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是( )
A. B.
C. D.
解析:选A.乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为+=.
5.(2016·中山模拟)从1,2,3,4,5这5个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是( )
A.① B.②④
C.③ D.①③
解析:选C.从1,2,3,4,5这5个数中任取两个数,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①中的事件可能同时发生,不是对立事件,故选C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
6.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是( )
A. B.
C. D.1
解析:选C.设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)=+=.即任意取出2粒恰好是同一色的概率为.
7.某城市2015年的空气质量状况如表所示:
污染指数T
30
60
100
110
130
140
概率P
其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2015年空气质量达到良或优的概率为________.
解析:由题意可知2015年空气质量达到良或优的概率为
P=++=.
答案:
8.对飞机连续射击两次,每次发射一枚炮弹.设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.
解析:设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅.故A与B,A与C,B与C,B与D为彼此互斥事件,而B∩D=∅,B∪D=I,故B与D互为对立事件.
答案:A与B、A与C、B与C、B与D B与D
9.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.
解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n个,则=,故n=15.
答案:15
10.某次知识竞赛规则如下:主办方预设3个问题,选手能正确回答出这3个问题,即可晋级下一轮.假设某选手回答正确
的个数为0,1,2的概率分别是0.1,0.2,0.3,则该选手晋级下一轮的概率为________.
解析:记“答对0个问题”为事件A,“答对1个问题”为事件B,“答对2个问题”为事件C,这3个事件彼此互斥,“答对3个问题(即晋级下一轮)”为事件D,则“不能晋级下一轮”为事件D的对立事件,显然P()=P(A∪B∪C)=P(A)+P(B)+P(C
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
)=0.1+0.2+0.3=0.6,故P(D)=1-P()=1-0.6=0.4.
答案:0.4
11.对一批衬衣进行抽样检查,结果如表:
抽取件数n
50
100
200
500
600
700
800
次品件数m
0
2
12
27
27
35
40
次品率
(1)求次品出现的频率(次品率);
(2)记“任取一件衬衣是次品”为事件A,求P(A);
(3)为了保证买到次品的顾客能够及时更换,销售1 000件衬衣,至少需进货多少件?
解:(1)次品率依次为0,0.02,0.06,0.054,0.045,0.05,0.05.
(2)由(1)知,出现次品的频率在0.05附近摆动,
故P(A)=0.05.
(3)设进衬衣x件,
则x(1-0.05)≥1 000,
解得x≥1 053,
故至少需进货1 053件.
12.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:
医生人数
0
1
2
3
4
5人及以上
概 率
0.1
0.16
x
y
0.2
z
(1)若派出医生不超过2人的概率为0.56,求x的值;
(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值.
解:(1)由派出医生不超过2人的概率为0.56,
得0.1+0.16+x=0.56,所以x=0.3.
(2)由派出医生最多4人的概率为0.96,
得0.96+z=1,所以z=0.04.
由派出医生最少3人的概率为0.44,
得y+0.2+0.04=0.44,
所以y=0.44-0.2-0.04=0.2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费