1、2 划时代的发现 探究感应电流的产生条件
课后篇巩固提升
基础巩固
1.首先发现电流的磁效应和电磁感应的物理学家分别是( )
A.安培和法拉第 B.法拉第和楞次
C.奥斯特和安培 D.奥斯特和法拉第
解析1820年,丹麦物理学家奥斯特发现了电流的磁效应;1831年,英国物理学家法拉第发现了电磁感应现象,选项D正确。
答案D
2.(多选)如图是法拉第最初研究电磁感应现象的装置,下列说法正确的是( )
A.当右边磁铁S极离开B端时,线圈中产生感应电流
B.当右边磁铁S极离开B端,并在B端附近运动时,线圈中产生感应电流
C.当磁铁保持图中状态不变时,线圈中有感应电流
D.当磁铁保持图中状态不变时,线圈中无感应电流
解析当右边磁铁离开B端或在B端附近运动时,线圈所处位置磁场变化,穿过线圈的磁通量变化,产生感应电流,A、B正确;当磁铁保持图中状态不变时,穿过线圈的磁通量不变,线圈中无感应电流,C错,D正确。
答案ABD
3.磁通量是研究电磁感应现象的重要物理量,如图所示,通有恒定电流的直导线MN与闭合线框共面,第一次将线框由位置1平移到位置2,第二次将线框由位置1绕cd边翻转到位置2,设前后两次通过线框的磁通量变化分别为ΔΦ1和ΔΦ2,则( )
A.ΔΦ1>ΔΦ2 B.ΔΦ1=ΔΦ2
C.ΔΦ1Φc。
答案B
5.如图所示,一个矩形线圈与通有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,则( )
A.两电流方向相同时,穿过线圈的磁通量为零
B.两电流方向相反时,穿过线圈的磁通量为零
C.两电流同向和反向时,穿过线圈的磁通量大小相等
D.因两电流产生的磁场不均匀,因此不能判断穿过线圈的磁通量是否为零
解析由安培定则判断出两大小相等电流之间的磁场分布如图所示:
两电流同向时,Φ=0,两电流反向时,Φ≠0。故A对。
答案A
6.(多选)
我国已经制订了登月计划,假如航天员登月后想探测一下月球表面是否有磁场,他手边有一只灵敏电流计和一个小线圈,则下列推断中正确的是( )
7
A.直接将电流计放于月球表面,看是否有示数来判断磁场有无
B.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计无示数,则判断月球表面无磁场
C.将电流计与线圈组成闭合回路,使线圈沿某一方向运动,如电流计有示数,则判断月球表面有磁场
D.将电流计与线圈组成闭合回路,使线圈分别绕两个互相垂直的轴转动,月球表面若有磁场,则电流计至少有一次示数不为零
解析电流计有示数时可判断有磁场存在,沿某一方向运动而无示数不能确定月球上是否存在磁场。D项中线圈分别绕互相垂直的轴转动,若月球存在磁场,则至少有一次穿过线圈(可正穿也可斜穿)的磁通量的变化率不为零,故至少有一次电流计有示数。C、D正确。
答案CD
7.
如图所示的线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成θ角,当线框转过90°到如图所示的虚线位置时,试求:
(1)初、末位置穿过线框的磁通量的大小Φ1和Φ2;
(2)磁通量的变化量ΔΦ的大小。
解析(1)如图所示,把磁感应强度B沿垂直于面积S和平行于面积S进行分解,得B上=Bsin θ,B左=Bcos θ
Φ1=B上S=BSsin θ
Φ2=-B左S=-BScos θ
(2)开始时B与线框平面成θ角,穿过线框的磁通量Φ1=BSsin θ;
当线框按顺时针方向转动时,转动至90°时,磁通量从另一面穿过,变为“负”值,为Φ2=-BScos θ。
所以,此过程中磁通量的变化量为
ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ
=-BS(cos θ+sin θ)
|ΔΦ|=BS(cos θ+sin θ)
答案(1)BSsin θ -BScos θ (2)BS(cos θ+sin θ)
能力提升
7
1.在闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电池构成电路,假定线圈产生的磁感线全部集中在铁芯内,a、b、c三个闭合金属圆环位置如图所示,当滑动变阻器的滑片左右滑动时,能产生感应电流的圆环是( )
A.a、b两环 B.b、c两环
C.a、c两环 D.a、b、c三个环
解析当滑动变阻器的滑片左右滑动时,引起电路中电流变化,从而引起闭合铁芯中的磁通量变化,a、b两圆环中的磁通量必定随之变化,能产生感应电流,而c环中有两股铁芯同时穿过,穿入和穿出的磁通量始终相等,合磁通量为零,所以c中不能产生感应电流。故选A。
答案A
2.(多选)如图所示的实验中,在一个足够大的磁铁的磁场中,如果AB沿水平方向运动速度的大小为v1,两磁极沿水平方向运动速度的大小为v2,则( )
A.当v1=v2,且方向相同时,可以产生感应电流
B.当v1=v2,且方向相反时,可以产生感应电流
C.当v1≠v2时,方向相同或相反都可以产生感应电流
D.当v2=0时,v1的方向改为与磁感线的夹角为θ,且θ