课题:28.2解直角三角形(1)
【学习目标】
⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形
⑵: 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
⑶: 渗透数形结合的数学思想,培养学生良好的学习习惯.
【学习重点】
直角三角形的解法.
【学习难点】
三角函数在解直角三角形中的灵活运用
【导学过程】
一、自学提纲:
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
如果用表示直角三角形的一个锐角,那上述式子就可以写成.
(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°.
a2 +b2 =c2 (勾股定理) 以上三点正是解直角三角形的依据.
二、合作交流:
要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)
(2)当梯子底端距离墙面2.4 m时,梯子与地面所成的角等于多少(精确到1o) 这时人是否能够安全使用这个梯子
三、教师点拨:
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,
a=,解这个三角形.
例2在Rt△ABC中, ∠B =35o,b=20,解这个三角形.
四、学生展示:
完成课本91页练习
补充题
1.根据直角三角形的__________元素(至少有一个边),求出________其它所有元素的过程,即解直角三角形.
2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形.
3、 在△ABC中,∠C为直角,AC=6,的平分线AD=4,解此直角三角形。
4、Rt△ABC中,若sinA=,AB=10,那么BC=_____,tanB=______.
5、在△ABC中,∠C=90°,AC=6,BC=8,那么sinA=________.
6、在△ABC中,∠C=90°,sinA=,则cosA的值是( )
A. B. C.
五、课堂小结:
小结“已知一边一角,如何解直角三角形?”
六、作业设置:
课本 第96页 习题28.2复习巩固第1题、第2题.
七、自我反思:
本节课我的收获: