课题:28.1锐角三角函数(3)
⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。
⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式
【学习重点】
熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式
【学习难点】
30°、45°、60°角的三角函数值的推导过程
【导学过程】
一、自学提纲:
一个直角三角形中,
一个锐角正弦是怎么定义的?
一个锐角余弦是怎么定义的?
一个锐角正切是怎么定义的?
二、合作交流:
思考:
两块三角尺中有几个不同的锐角?
是多少度?
你能分别求出这几个锐角的正弦值、余弦值和正切值码?.
三、教师点拨:
归纳结果
30°
45°
60°
siaA
cosA
tanA
例3:求下列各式的值.
(1)cos260°+sin260°. (2)-tan45°.
例4:(1)如图(1),在Rt△ABC中,∠C=90,AB=,BC=,求∠A的度数.
(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求a.
四、学生展示:
一、课本83页 第1 题
课本83页 第 2题
二、选择题.
1.已知:Rt△ABC中,∠C=90°,cosA=,AB=15,则AC的长是( ).
A.3 B.6 C.9 D.12
2.下列各式中不正确的是( ).
A.sin260°+cos260°=1 B.sin30°+cos30°=1
C.sin35°=cos55° D.tan45°>sin45°
3.计算2sin30°-2cos60°+tan45°的结果是( ).
A.2 B. C. D.1
4.已知∠A为锐角,且cosA≤,那么( )
A.0°