第三课时
教学内容
“求一个数比另一个数多(或少)百分之几”的应用题
教材第89页的内容。
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养学生认真审题的好习惯。
重点难点
掌握“求一个数比另一个数多(或少)百分之几”这类应用题的分析方法,能够正确地列式计算。
教具学具
实物投影。
教学过程
一 导入
1.解答“求一个数是另一个数的百分之几”的应用题用什么方法?
2.解答“求一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,哪个量是标准量,哪个量就作除数)
3.口答。(只列式不计算)
(1)5是4的百分之几?4是5的百分之几?
(2)甲数是60,乙数是30,甲数比乙数多多少?甲数比乙数多百分之几?
(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少百分之几?
4.揭示课题。
出示复习题:一个乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?
提问:通过读题,在这道题中,哪个量是标准量?你是从哪句话中找出来的?应怎样列式?
老师:如果将这道题的问题变为“实际造林比原计划增加了百分之几”,应该怎样解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
二 教学实施
1.出示例3。
(1)学生默读题。
(2)例3与复习题比较,有什么异同?(条件相同,问题不同)问题不同在哪儿?
老师说明复习题求的是实际造林是原计划的百分之几,例3是求实际造林比原计划增加百分之几。
(3)根据题意画出线段图。
(4)启发学生想“求实际造林比原计划多的公顷数占原计划的百分之几”是哪两个量在比较。哪个量是单位“1”?
板书:多造的÷原计划的(单位“1”)
(5)讨论,列式计算。
提问:根据以上分析,要求“实际造林比原计划多造的公顷数占原计划的百分之几”必须先算什么?再算什么?
板书:(14-12)÷12=2÷12≈0.167=16.7%
答:实际造林比原计划增加了16.7%。
提问:“14-12”求的是什么?为什么不除以14呢?
(6)这道题还有其他解法吗?
引导学生思考:把原计划造林看作百分之百,实际造林是原计划的116.7%,两个百分数之差就是实际造林比原计划多的百分数。
学生列式,老师板书:
14÷12≈1.167=116.7%
116.7%-100%=16.7%
老师说明:在实际生活中,人们常用“增加百分之几”“减少百分之几”“节约百分之几”……来表达增加、减少的幅度。
2.拓展。
将例3中的问题改为“原计划造林比实际少百分之几”,该怎样解答呢?
(1)提问:根据问题分析,哪两个量在比较?把哪个量看作单位“1”解答时,先求什么?再求什么?
引导学生回答是原计划造林比实际造林少的公顷数和实际造林数比较,要把实际造林的公顷数看作单位“1”。必须先求出原计划造林比实际造林少的公顷数,才能求出原计划造林比实际少百分之几。
(2)学生列式,老师板书:(14-12)÷14
如果有学生列式为14÷14-12÷14也是允许的。
(3)观察比较。
将例3的第一种列式及改变问题后的第一种列式进行比较。不同点在什么地方?为什么除数不一样?
学生讨论,再次强调两题中比的对象不同,单位“1”就会发生变化,解答这种题时,仍要注意找准单位“1”。
三 课堂作业新设计
1.分析数量关系。
(1)求今年小麦的产量是去年的百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。
(2)求今年小麦的产量比去年增产百分之几,是把( )看作单位“1”,是( )和( )比,所以用( )÷( )。
2.看线段图填空。
(1)女生人数占全班人数的 %。 (2)男生人数比女生人数多 %。
列式: 列式:
(3)女生人数比男生人数少 %。
列式:
3.操场上有男生25人,女生20人。女生人数比男生人数少百分之几?
4.一辆自行车原价是312元,现价比原价降低了168元。降低了百分之几?
四 思维训练
甲校学生人数比乙校多25%,乙校学生人数比甲校少百分之几?
参考答案
课堂作业新设计
1.(1)去年小麦的产量 今年小麦的产量 去年小麦的产量 今年小麦的产量 去年小麦的产量 (2)去年小麦的产量 今年比去年增产的量 去年小麦的产量 今年小麦比去年增产的量 去年小麦的产量
2.(1)37.5 3÷8 (2)66.7 (5-3)÷3 (3)40 (5-3)÷5
3. (25-20)÷25=20%
4. 168÷312≈0.538=53.8%
思维训练
25%÷(100%+25%)=20%
教材习题
教材第89页“做一做”
(10-9)÷10=10%
板书设计
“求一个数比另一个数多(或少)百分之几”的应用题
求一个数比另一个数多(或少)百分之几,实质上也是求一个数是另一个数的百分之几,即两个数的差量占另一个数(即单位“1”的量)的百分之几。
用A表示一个数,B表示另一个数。
求A比B多百分之几:1. (A-B)÷B 2. A÷B-1
求B比A少百分之几:1. (A-B)÷A 2. 1-B÷A
注意:找准单位“1”,用单位“1”的量作除数。
备课参考
教材与学情分析
这部分内容是“求一个数是另一个数的百分之几”的应用题的发展。它是在“求比一个数多(少)
几分之几”的分数应用题的基础上进行教学的。这种题实际上还是“求一个数是另一个数的百分之几”的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答“比一个数多(少)百分之几”的应用题,学生可以加深对百分数的认识,提高解百分数应用题的能力。用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。
课堂设计说明
1.注重学生的认知起点,设计有层次性、开放性的练习。学生能依据自己的知识和经验,沟通知识间的内在联系,建构系统的知识网络,优化知识结构,利用所学过的知识来提出问题、解决问题,还学会发现未知的问题,自主探索解决。在学习知识的同时,培养学生的数学兴趣。
2.利用学生生活中的现实情况,大胆地处理教材,力求多元化地处理已知的信息,将学习内容化枯燥为生动、变抽象为具体。
3.编题改题,系统内化。
这一教学过程沟通知识间的内在联系,学生依据自己的知识与经验主动“理解”“消化”,并形成知识网络。优化知识结构及学生的认知特点,培养学生迁移推理能力。