由莲山课件提供http://www.5ykj.com/ 资源全部免费
江苏省无锡市2017年中考数学试卷(解析版)
一、选择题(本大题共10小题,每小题3分,共30分)
1.﹣5的倒数是( )
A. B.±5 C.5 D.﹣
【考点】17:倒数.
【分析】根据倒数的定义,即可求出﹣5的倒数.
【解答】解:∵﹣5×(﹣)=1,
∴﹣5的倒数是﹣.
故选D.
2.函数y=中自变量x的取值范围是( )
A.x≠2 B.x≥2 C.x≤2 D.x>2
【考点】E4:函数自变量的取值范围.
【分析】根据分式的意义的条件,分母不等于0,可以求出x的范围.
【解答】解:根据题意得:2﹣x≠0,
解得:x≠2.
故函数y=中自变量x的取值范围是x≠2.
故选A.
3.下列运算正确的是( )
A.(a2)3=a5 B.(ab)2=ab2 C.a6÷a3=a2 D.a2•a3=a5
【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.
【分析】利用幂的运算性质直接计算后即可确定正确的选项.
【解答】解:A、(a2)3=a6,故错误,不符合题意;
B、(ab)2=a2b2,故错误,不符合题意;
C、a6÷a3=a3,故错误,不符合题意;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D、a2•a3=a5,正确,符合题意,
故选D.
4.下列图形中,是中心对称图形的是( )
A. B. C. D.
【考点】R5:中心对称图形.
【分析】根据中心对称图形的定义逐个判断即可.
【解答】解:A、不是中心对称图形,故本选项不符合题意;
B、不是中心对称图形,故本选项不符合题意;
C、是中心对称图形,故本选项符合题意;
D、不是中心对称图形,故本选项不符合题意;
故选C.
5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于( )
A.1 B.﹣1 C.5 D.﹣5
【考点】44:整式的加减.
【分析】根据题中等式确定出所求即可.
【解答】解:∵a﹣b=2,b﹣c=﹣3,
∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,
故选B
6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )
成绩(分)
70
80
90
男生(人)
5
10
7
女生(人)
4
13
4
A.男生的平均成绩大于女生的平均成绩
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B.男生的平均成绩小于女生的平均成绩
C.男生成绩的中位数大于女生成绩的中位数
D.男生成绩的中位数小于女生成绩的中位数
【考点】W4:中位数;W1:算术平均数.
【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.
【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,
女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,
∴男生的平均成绩大于女生的平均成绩.
∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,
女生一共21人,位于最中间的一个数是80,所以中位数是80,
∴男生成绩的中位数等于女生成绩的中位数.
故选A.
7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )
A.20% B.25% C.50% D.62.5%
【考点】AD:一元二次方程的应用.
【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.
【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,
由题意可得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),
答即该店销售额平均每月的增长率为50%;
故选:C.
8.对于命题“若a2>b2,则a>
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
b”,下面四组关于a,b的值中,能说明这个命题是假命题的是( )
A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3
【考点】O1:命题与定理.
【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别难度验证即可.
【解答】解:
在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;
在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;
在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;
在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;
故选B.
9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )
A.5 B.6 C.2 D.3
【考点】MC:切线的性质;L8:菱形的性质.
【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,延长即可解决问题.
【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵菱形ABCD的边AB=20,面积为320,
∴AB•DH=32O,
∴DH=16,
在Rt△ADH中,AH==12,
∴HB=AB﹣AH=8,
在Rt△BDH中,BD==8,
设⊙O与AB相切于F,连接AF.
∵AD=AB,OA平分∠DAB,
∴AE⊥BD,
∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,
∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,
∴△AOF∽△DBH,
∴=,
∴=,
∴OF=2.
故选C.
10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )
A.2 B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】PB:翻折变换(折叠问题);KP:直角三角形斜边上的中线;KQ:勾股定理.
【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE在Rt△BCE中,利用勾股定理即可解决问题.
【解答】解:如图连接BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∵AC=4,AB=3,
∴BC==5,
∵CD=DB,
∴AD=DC=DB=,
∵•BC•AH=•AB•AC,
∴AH=,
∵AE=AB,DE=DB=DC,
∴AD垂直平分线段BE,△BCE是直角三角形,
∵•AD•BO=•BD•AH,
∴OB=,
∴BE=2OB=,
在Rt△BCE中,EC===,
故选D.
二、填空题(本大题共8小题,每小题2分,共16分)
11.计算×的值是 6 .
【考点】75:二次根式的乘除法.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.
【解答】解:×===6;
故答案为:6.
12.分解因式:3a2﹣6a+3= 3(a﹣1)2 .
【考点】55:提公因式法与公式法的综合运用.
【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.
【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.
故答案为:3(a﹣1)2.
13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105 .
【考点】1I:科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将250000用科学记数法表示为:2.5×105.
故答案为:2.5×105.
14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 11 ℃.
【考点】18:有理数大小比较;1A:有理数的减法.
【分析】求出每天的最高气温与最低气温的差,再比较大小即可.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,
∴这7天中最大的日温差是11℃.
故答案为:11.
15.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为 2 .
【考点】G7:待定系数法求反比例函数解析式.
【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.
【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.
16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为 15π cm2.
【考点】MP:圆锥的计算.
【分析】圆锥的侧面积=底面周长×母线长÷2.
【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.
17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于 3﹣﹣ .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】MO:扇形面积的计算;LB:矩形的性质.
【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.
【解答】解:连接O1O2,O1E,O2F,
则四边形O1O2FE是等腰梯形,
过E作EG⊥O1O2,过F⊥O1O2,
∴四边形EGHF是矩形,
∴GH=EF=2,
∴O1G=,
∵O1E=1,
∴GE=,
∴=;
∴∠O1EG=30°,
∴∠AO1E=30°,
同理∠BO2F=30°,
∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.
故答案为:3﹣﹣.
18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 3 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】T7:解直角三角形.
【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值.,本题得以解决
【解答】解:平移CD到C′D′交AB于O′,如右图所示,
则∠BO′D′=∠BOD,
∴tan∠BOD=tan∠BO′D′,
设每个小正方形的边长为a,
则O′B=,O′D′=,BD′=3a,
作BE⊥O′D′于点E,
则BE=,
∴O′E==,
∴tanBO′E=,
∴tan∠BOD=3,
故答案为:3.
三、解答题(本大题共10小题,共84分)
19.计算:
(1)|﹣6|+(﹣2)3+()0;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)(a+b)(a﹣b)﹣a(a﹣b)
【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式;6E:零指数幂.
【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;
(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.
【解答】解:(1)原式=6﹣8+1=﹣1
(2)原式=a2﹣b2﹣a2+ab=ab﹣b2
20.(1)解不等式组:
(2)解方程: =.
【考点】B3:解分式方程;CB:解一元一次不等式组.
【分析】(1)分别解不等式,进而得出不等式组的解集;
(2)直接利用分式的性质求出x的值,进而得出答案.
【解答】解:(1)解①得:x>﹣1,
解②得:x≤6,
故不等式组的解集为:﹣1<x≤6;
(2)由题意可得:5(x+2)=3(2x﹣1),
解得:x=13,
检验:当x=13时,(x+2)≠0,2x﹣1≠0,
故x=13是原方程的解.
21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.
【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.
【解答】证明:∵E是BC的中点,
∴CE=BE,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴∠DCB=∠FBE,
在△CED和△BEF中,,
∴△CED≌△BEF(ASA),
∴CD=BF,
∴AB=BF.
22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)
【考点】X6:列表法与树状图法.
【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.
【解答】解:根据题意画图如下:
共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:
时间
第1天
第2天
第3天
第4天
第5天
新加入人数(人)
153
550
653
b
725
累计总人数(人)
3353
3903
a
5156
5881
(1)表格中a= 4556 ,b= 600 ;
(2)请把下面的条形统计图补充完整;
(3)根据以上信息,下列说法正确的是 ① (只要填写正确说法前的序号).
①在活动之前,该网站已有3200人加入;
②在活动期间,每天新加入人数逐天递增;
③在活动期间,该网站新加入的总人数为2528人.
【考点】VC:条形统计图.
【分析】(1)观察表格中的数据即可解决问题;
(2)根据第4天的人数600,画出条形图即可;
(3)根据题意一一判断即可;
【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.
故答案为4556,600.
(2)统计图如图所示,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)①正确.3353﹣153=3200.故正确.
②错误.第4天增加的人数600<第3天653,故错误.
③错误.增加的人数=153+550+653+600+725=2681,故错误.
故答案为①
24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
(1)作△ABC的外心O;
(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.
【考点】N3:作图—复杂作图;KK:等边三角形的性质;MA:三角形的外接圆与外心.
【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;
(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)如图所示:点O即为所求.
(2)如图所示:六边形DEFGHI即为所求正六边形.
25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.
(1)点P(a,b)经过T变换后得到的点Q的坐标为 (a+b, b) ;若点M经过T变换后得到点N(6,﹣),则点M的坐标为 (9,﹣2) .
(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.
①求经过点O,点B的直线的函数表达式;
②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.
【考点】FI:一次函数综合题.
【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;
(2)①可取A(2,),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.
【解答】解:
(1)如图1,连接CQ,过Q作QD⊥PC于点D,
由旋转的性质可得PC=PQ,且∠CPQ=60°,
∴△PCQ为等边三角形,
∵P(a,b),
∴OC=a,PC=b,
∴CD=PC=b,DQ=PQ=b,
∴Q(a+b, b);
设M(x,y),则N点坐标为(x+y, y),
∵N(6,﹣),
∴,解得,
∴M(9,﹣2);
故答案为:(a+b, b);(9,﹣2);
(2)①∵A是函数y=x图象上异于原点O的任意一点,
∴可取A(2,),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴2+×=,×=,
∴B(,),
设直线OB的函数表达式为y=kx,则k=,解得k=,
∴直线OB的函数表达式为y=x;
②设直线AB解析式为y=k′x+b,
把A、B坐标代入可得,解得,
∴直线AB解析式为y=﹣x+,
∴D(0,),且A(2,),B(,),
∴AB==,AD==,
∴===.
26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:
污水处理器型号
A型
B型
处理污水能力(吨/月)
240
180
已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.
(1)求每台A型、B型污水处理器的价格;
(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?
【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.
【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.
【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有
,
解得.
答:设每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;
(2)购买6台A型污水处理器、3台B型污水处理器,费用最少,
10×6+8×3
=60+24
=84(万元).
答:他们至少要支付84万元钱.
27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.
(1)求点P的坐标;
(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.
【考点】MR:圆的综合题.
【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出==
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
=,推出CH=2n,EH=2m=6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;
(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;
【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.
∵EH∥AP,
∴△ACP∽△ECH,
∴===,
∴CH=2n,EH=2m=6,
∵CD⊥AB,
∴PC=PD=n,
∵PB∥HE,
∴△DPB∽△DHE,
∴===,
∴=,
∴m=1,
∴P(1,0).
(2)由(1)可知,PA=4,HE=8,EF=9,
连接OP,在Rt△OCP中,PC==2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴CH=2PC=4,PH=6,
∴E(9,6),
∵抛物线的对称轴为CD,
∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,
∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.
28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.
(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.
【考点】LO:四边形综合题.
【分析】(1)只要证明△ABD∽△DPC,可得=,由此求出PD即可解决问题;
(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;
【解答】解:(1)如图1中,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵四边形ABCD是矩形,
∴∠ADC=∠A=90°,
∴∠DCP+∠CPD=90°,
∵∠CPD+∠ADB=90°,
∴∠ADB=∠PCD,
∵∠A=∠CDP=90°,
∴△ABD∽△DPC,
∴=,
∴=,
∴PD=,
∴t=s时,B、E、D共线.
(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.
作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
易证四边形EMCQ是矩形,
∴CM=EQ=3,∠M=90°,
∴EM===,
∵∠DAC=∠EDM,∠ADC=∠M,
∴△ADC∽△DME,
=,
∴=,
∴AD=4,
如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.
作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4
在Rt△ECQ中,QC=DM==,
由△DME∽△CDA,
∴=,
∴=,
∴AD=,
综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.
由莲山课件提供http://www.5ykj.com/ 资源全部免费