由莲山课件提供http://www.5ykj.com/ 资源全部免费
八年级数学人教版第十五章分式专项测试题(五)
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、某市为解决部分市民冬季集中取暖问题需铺设一条长米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为( )
A. 每天比原计划少铺设米,结果提前天才完成
B. 每天比原计划多铺设米,结果提前天才完成
C. 每天比原计划少铺设米,结果延期天才完成
D. 每天比原计划多铺设米,结果延期天才完成
【答案】B
【解析】解:
设实际每天铺设管道米,原计划每天铺设管道米,方程,
则表示实际用的时间原计划用的时间天,
那么就说明实际每天比原计划多铺设米,结果提前天完成任务.
2、当时,的结果是( ).
A.
B.
C.
D.
【答案】D
【解析】解:,
,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
.
当时,
原式,
.
故正确答案为:.
3、若等于它的倒数,则分式的值为( )
A.
B. 或
C.
D.
【答案】B
【解析】解:∵等于它的倒数,
∴,
原式=•
,
当时,原式;
当时,原式.
故正确答案为:或.
4、若解关于的方程产生增根,则常数的值可能为下列的( )
A.
B.
C.
D.
【答案】A
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解析】解:
去分母,得
移项,得
方程的增根为
故答案应选:.
5、化简的结果是( )
A.
B.
C.
D.
【答案】A
【解析】解:
故正确答案是:
6、分式方程的解为 ( )
A.
B.
C.
D.
【答案】A
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解析】解:
经检验:时,,
原方程的解为.
7、已知分式的值为,那么的值是( )
A. 或
B.
C.
D.
【答案】C
【解析】解:
分式的值为,
且,
解得.
8、若分式的和扩大为原来各自的倍,则分式的值( )
A. 缩小到原分式的
B. 缩小到原分式的
C. 缩小到原分式的
D. 不变
【答案】B
【解析】解:
分式的和扩大为原来各自的倍,得
.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9、用换元法解方程,若设,则原方程可化为( )
A.
B.
C.
D.
【答案】D
【解析】解:把代入原方程得:,
方程两边同乘以整理得:.
10、若是分式方程的根,则的值是( )
A.
B.
C.
D.
【答案】A
【解析】是分式方程的根,
,
,
,
,
即的值是.
11、下列关于的方程,是分式方程的是( )
A.
B.
C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D.
【答案】D
【解析】方程分母中不含未知数,故不是分式方程;
方程分母中不含未知数,故不是分式方程;
方程分母中不含表示未知数的字母,是常数;
方程分母中含未知数,故是分式方程.
12、设,,则( )
A.
B.
C.
D.
【答案】D
【解析】,
,
,
,
,
,
原式
13、若,则( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.
B.
C.
D.
【答案】A
【解析】根据题意得:
,
,
,.
14、分式和最简公分母是( )
A.
B.
C.
D.
【答案】C
【解析】分式和最简公分母是.
15、若分式的值为正数,则的取值范围是( )
A. 且
B.
C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D.
【答案】A
【解析】,且.
,分式的值为正数,
解得,且.
二、填空题(本大题共有5小题,每小题5分,共25分)
16、对于分式方程,若设,则原方程可化为 .
【答案】
【解析】解:
原分式方程可化为:.
把代入可得,.
两边同乘以得,,
整理,得.
故答案为:.
17、化简=_________.
【答案】
【解析】解:
故正确答案为:
18、已知关于的分式方程的解是非正数,则取值范围是______.
【答案】且
【解析】解:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
方程为分式方程.
,解得.
由,得,
即.
因为方程解是非正数,
,即.
因为方程有解,所以,
所以 且.
故答案为: 且.
19、方程的解为 .
【答案】8
【解析】解:
经检验当是原方程的解.
所以原方程有一个实数根为:
故答案是:.
20、下列方程:①;②;③(为已知数);④.其中是分式方程的是______.
【答案】①④
【解析】解:
①是分式方程;
②是整式方程;
③(为已知数)是整式方程;
④是分式方程.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(本大题共有3小题,每小题10分,共30分)
21、计算:•.
【解析】解:原式•
.
22、若不论取任意实数,分式都有意义,求的取值范围.
【解析】解:依题意得 ,
,
,不论取任意实数,分式都有意义,
,
解得,
故正确答案为:.
23、解方程:.
【解析】解:
设,则原方程化为:,
解得,
有,解得,
将代入最简公分母进行检验,,
是原分式的解.
由莲山课件提供http://www.5ykj.com/ 资源全部免费