由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017-2018学年福建省泉州市惠安县九年级(下)期中模拟试卷
一.选择题(共10小题,满分40分)
1.下列二次根式是最简二次根式的是( )
A. B. C. D.
2.已知x为实数,化简的结果为( )
A. B. C. D.
3.一元二次方程(x+1)2=16用直接开平方法可转化为两个一元一次方程,其中一个一元一次方程是x+1=4,则另一个一元一次方程是( )
A.x﹣1=﹣4 B.x﹣1=4 C.x+1=﹣4 D.x+1=4
4.将代数式x2﹣10x+5配方后,发现它的最小值为( )
A.﹣30 B.﹣20 C.﹣5 D.0
5.矩形的对角线长10cm,顺次连结矩形四边中点所得四边形的周长为( )
A.40 cm B.10 cm C.5 cm D.20 cm
6.已知=,则的值为( )
A.﹣2 B.2 C.﹣ D.
7.如图,EF∥AC,GH∥AB,MN∥BC,EF、GH、MN、交于点P,则图中与△PGF相似的三角形的个数是( )个.
A.4 B.5 C.6 D.7
8.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )
A.168(1+x)2=108 B.168(1﹣x)2=108
C.168(1﹣2x)=108 D.168(1﹣x2)=108
9.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.
10.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为( )
A.M≤N B.M=N C.M>N D.不能确定
二.填空题(共6小题,满分24分,每小题4分)
11.若二次根式在实数范围内有意义,则x的取值范围是 .
12.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是 .
13.在阳光下,身高1.6m的小强的影长是0.8m,同一时刻,一棵在树的影长为4.8m,则树的高度为 m.
14.已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为 .
15.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于
16.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三.解答题(共9小题,满分73分)
17.(8分)计算:.
18.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.
19.(8分)解下列方程:
(1)x2+10x+25=0
(2)x2﹣x﹣1=0.
20.(8分)已知:CD为一幢3米高的温室,其南面窗户的底框G距地面1米,CD在地面上留下的最大影长CF为2米,现欲在距C点7米的正南方A点处建一幢12米高的楼房AB(设A,C,F在同一水平线上).
(1)按比例较精确地作出高楼AB及它的最大影长AE;
(2)问若大楼AB建成后是否影响温室CD的采光,试说明理由.
21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).
(1)在图1中画出△ABC关于y轴对称的△A1B1C1,直接写出点C的对应点C1的坐标.
(2)在图2中,以点O为位似中心,将△ABC放大,使放大后的△A2B2C2与△ABC 的对应边的比为2:1(画出一种即可).直接写出点C的对应点C2的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(10分)已知关于x的一元二次方程x2+ax+a﹣2=0.
(1)若该方程的一个根为﹣2,求a的值及该方程的另一根;
(2)求证:无论a取何实数,该方程都有两个不相等的实数根.
23.(10分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?
24.△ABC,△DEC均为直角三角形,B,C,E三点在一条直线上,过D作DM⊥AC于M.
(1)如图1,若△ABC≌△DEC,且AB=2BC.
①过B作BN⊥AC于N,则线段AN,BN,MN之间的数量关系为: ;(直接写出答案)
②连接ME,求的值;
(2)如图2,若AB=CE=DE,DM=2,MC=1,求ME的长.
25.(13分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案与解析
一.选择题
1.
【解答】解:A、=,不符合题意;
B、是最简二次根式,符合题意;
C、=2,不符合题意;
D、=a(a>0),不符合题意;
故选:B.
2.
【解答】解:原式=﹣x﹣x•(﹣)
=﹣x+
=(1﹣x).
故选:C.
3.
【解答】解:∵(x+1)2=16,
∴x+1=±4,
∴x+1=4或x+1=﹣4,
故选:C.
4.
【解答】解:x2﹣10x+5=x2﹣10x+25﹣20=(x﹣5)2﹣20,
当x=5时,代数式的最小值为﹣20,
故选:B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5.
【解答】解:因为矩形的对角线相等,所以AC=BD=10cm,
∵E、F、G、H分别是AB、BC、CD、AD、的中点,
∴EH=GF=BD=×10=5cm,EF=GH=AC=×10=5cm,
故顺次连接矩形四边中点所得的四边形周长为EH+GF+EF+GH=5+5+5+5=20cm.
故选:D.
6.
【解答】解:∵=,
∴设x=5a,y=2a,
∴==.
故选:D.
7.
【解答】解:∵EF∥AC,GH∥AB,MN∥BC,
∴△PGF∽△EBF,△PGF∽△HGC,△AMN∽△ABC,△EMP∽△ENF,△HPN∽△HGC,△EBF∽△ABC,
故选:C.
8.
【解答】解:设每次降价的百分率为x,根据题意得:
168(1﹣x)2=108.
故选:B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9.
【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,
∴,A错误;
∴,C错误;
∴,D正确;
不能得出,B错误;
故选:D.
10.
【解答】解:M﹣N=a﹣1﹣a2+a=﹣a2+2a﹣1=﹣(a﹣1)2≤0,
∴M≤N
故选:A.
二.填空题(共6小题,满分24分,每小题4分)
11.
【解答】解:∵式子在实数范围内有意义,
∴x﹣1≥0,
解得x≥1.
故答案为:x≥1.
12.
【解答】解:∵两个相似三角形的面积比是4:9,
∴这两个相似三角形的相似比是2:3,
∵其对应角平分线的比等于相似比,
∴它们对应的角平分线比是2:3.
故答案为2:3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
13.
【解答】解:设树的高度为xm.
根据在同一时刻身高与影长成比例可得: =,
解得:x=9.6.
故答案为:9.6.
14.
【解答】解:由n2+2n﹣1=0可知n≠0.
∴1+﹣=0.
∴﹣﹣1=0,
又m2﹣2m﹣1=0,且mn≠1,即m≠.
∴m,是方程x2﹣2x﹣1=0的两根.
∴m+=2.
∴=m+1+=2+1=3,
故答案为:3.
15.
【解答】解:∵DE∥BC,AD=2BD,
∴,
∵EF∥AB,
∴,
故答案为:
16.
【解答】解:∵四边形OABC是矩形,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BC=OA=6,AB=OC=4,∠B=∠OCB=90°,
分三种情况:如图所示:
①当PO=PA时,P在OA的垂直平分线上,P是BC的中点,PC=3,]
∴点P的坐标为(3,4);
②当AP=AO=6时,BP==2,
∴PC=6﹣2,
∴P(6﹣2,4);
③当OP=OA=6时,PC==2,
∴P(2,4).
综上所述:点P的坐标为(3,4)或(2,4)或(6﹣2,4).
故答案为:(3,4)或(2,4)或(6﹣2,4).
三.解答题(共9小题,满分73分)
17.
【解答】解:原式=
=
18.
【解答】解:原式=[﹣]÷
=•
=,
∵x2﹣2x﹣2=0,
∴x2=2x+2=2(x+1),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则原式==.
19.
【解答】解:(1)配方,得
(x+5)2=0,
开方,得
x+5=0,
解得x=﹣5,
x1=x2=﹣5;
(2)移项,得
x2﹣x=1,
配方,得
x2﹣x+=,
(x﹣)2=,
开方,得
x﹣=±,
x1=,x2=.
20.
【解答】解:如图,∵HE∥DF,HC∥AB,
∴△CDF∽△ABE∽△CHE,
∴AE:AB=CF:DC,
∴AE=8米,由AC=7米,可得CE=1米,
由比例可知:CH=1.5米>1米,
故影响采光.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.
【解答】解:(1)△ABC关于y轴对称的△A1B1C1如图所示,
点C1的坐标(﹣3,1);
(2)放大后的△A2B2C2如图所示(画出一种即可),如图所示
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C2的坐标(﹣6,﹣2).
22.
【解答】解:(1)将x=﹣2代入方程x2+ax+a﹣2=0得,4﹣2a+a﹣2=0,
解得,a=2;
方程为x2+2x=0,解得x1=0,x2=﹣2,
即方程的另一根为0;
(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,
∴不论a取何实数,该方程都有两个不相等的实数根.
23.
【解答】解:设每件纪念品应降价x元,则:
化简得:x2﹣30x+200=0
解得:x1=20,x2=10
∵商店要尽快减少库存,扩大销量而降价越多,销量就越大
∴x=20
答:每件纪念品应降价20元.
24.
【解答】解:(1)①如图1,连接AD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵△ABC≌△DEC,
∴AB=2BC=2CE=BE,
又∵∠ABC=∠DEC=90°,
∴AB∥DE,
∴四边形ABED是平行四边形,
∴四边形ABED是矩形,[
∴AD=BE=AB,∠BAD=90°,
又∵BN⊥AC,DM⊥AC,
∴∠DMA=∠ANB=90°,∠BAN+∠DAM=∠ADM+∠DAM=90°,
∴∠BAN=∠ADM,
∴△ABN≌△DAM,
∴AM=BN,
∵AN﹣AM=MN,
∴AN﹣BN=MN,
故答案为:AN﹣BN=MN;
②如图,延长AC,交DE的延长线于F,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由∠ABC=∠FEC=90°,BC=EC,∠ACB=∠FCE,可得△ABC≌△FEC,
∴EF=AB=DE,
∴E是DF的中点,
又∵∠DMF=90°,
∴Rt△DMF中,ME=DF=DE,
又∵CE=BE=DE,
∴=;
(2)如图,过E作EG⊥DM于G,EH⊥AC于H,过C作CF⊥ME于F,
则∠DGE=∠H=90°,
∴∠HEG=90°=∠CED,
∴∠CEH=∠DEG,
又∵CE=DE,
∴△CEH≌△DEG,
∴GE=CE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴ME平分∠DMC,
∴∠CMF=45°,
∵MC=1,
∴CF=MF=,
又∵Rt△CEF中,EF==,
∴ME=MF+EF=.
25.
【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,
∴A(4,0),C(0,8),
∴OA=4,OC=8,
∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
∴四边形OABC是矩形,
∴AB=OC=8,BC=OA=4,
在Rt△ABC中,根据勾股定理得,AC==4,
故答案为:8,4,4;
(2)A、①由(1)知,BC=4,AB=8,
由折叠知,CD=AD,
在Rt△BCD中,BD=AB﹣AD=8﹣AD,
根据勾股定理得,CD2=BC2+BD2,
即:AD2=16+(8﹣AD)2,
∴AD=5,
②由①知,D(4,5),
设P(0,y),
∵A(4,0),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AP2=16+y2,DP2=16+(y﹣5)2,
∵△APD为等腰三角形,
∴Ⅰ、AP=AD,
∴16+y2=25,
∴y=±3,
∴P(0,3)或(0,﹣3)
Ⅱ、AP=DP,
∴16+y2=16+(y﹣5)2,
∴y=,
∴P(0,),
Ⅲ、AD=DP,25=16+(y﹣5)2,
∴y=2或8,
∴P(0,2)或(0,8).
B、①、由A①知,AD=5,
由折叠知,AE=AC=2,DE⊥AC于E,
在Rt△ADE中,DE==,
②、∵以点A,P,C为顶点的三角形与△ABC全等,
∴△APC≌△ABC,或△CPA≌△ABC,
∴∠APC=∠ABC=90°,
∵四边形OABC是矩形,
∴△ACO≌△CAB,此时,符合条件,点P和点O重合,
即:P(0,0),
如图3,
过点O作ON⊥AC于N,
易证,△AON∽△ACO,
∴,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴,
∴AN=,
过点N作NH⊥OA,
∴NH∥OA,
∴△ANH∽△ACO,
∴,
∴,
∴NH=,AH=,
∴OH=,
∴N(,),
而点P2与点O关于AC对称,
∴P2(,),
同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),
即:满足条件的点P的坐标为:(0,0),(,),(﹣,).
由莲山课件提供http://www.5ykj.com/ 资源全部免费