3.2.1 复数代数形式的加减运算及其几何意义
课后训练案巩固提升
一、A组
1.若复数z满足z+(3-4i)=1,则z的虚部是( )
A.-2 B.4 C.3 D.-4
解析:z=1-(3-4i)=-2+4i,所以z的虚部是4.
答案:B
2.若复数z1=-2+i,z2=1+2i,则复数z1-z2在复平面内对应点所在的象限是( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:z1-z2=(-2+i)-(1+2i)=(-2-1)+(i-2i)=-3-i,故z1-z2对应点的坐标为(-3,-1),在第三象限.
答案:C
3.在平行四边形ABCD中,对角线AC与BD相交于点O,若向量对应的复数分别是3+i,-1+3i,则对应的复数是( )
A.2+4i B.-2+4i
C.-4+2i D.4-2i
解析:依题意有,而(3+i)-(-1+3i)=4-2i,即对应的复数为4-2i,故选D.
答案:D
4.已知复数z满足|z|-z=3-i,则z=( )
A.-+i B.--i
C.--i D.-3+4i
解析:设z=a+bi(a,b∈R),所以|z|=.
因为|z|-z=3-i,
所以-a-bi=3-i,
所以
所以z=-+i,选A.
答案:A
5.在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图象是( )
A.圆 B.直线
C.椭圆 D.双曲线
解析:设z=x+yi(x,y∈R),
∵|z+1|=|x+yi+1|=,
- 5 -
|z-i|=|x+yi-i|=,
∴.
∴x+y=0.
∴z的对应点Z的集合构成的图象是第二、四象限角平分线.
答案:B
6.在复平面内,O是原点,对应的复数分别为-2+i,3+2i,1+5i,则对应的复数为 .
解析: -(),对应的复数为3+2i-(-2+i+1+5i)=(3+2-1)+(2-1-5)i=4-4i.
答案:4-4i
7.已知f(z+i)=3z-2i,则f(i)= .
解析:设z=a+bi(a,b∈R),则f[a+(b+1)i]=3(a+bi)-2i=3a+(3b-2)i,令a=0,b=0,则f(i)=-2i.
答案:-2i
8.已知z是复数,|z|=3,且z+3i是纯虚数,则z= .
解析:设z=a+bi(a,b∈R),则a+bi+3i=a+(b+3)i是纯虚数,∴a=0,b+3≠0,
又∵|z|=3,∴b=3,∴z=3i.
答案:3i
9.已知z1=a+(a+1)i,z2=-3b+(b+2)i(a,b∈R),且z1-z2=4,求复数z=a+bi.
解:z1-z2=+(a-b-1)i,
所以=4,a-b-1=0,
解得a=2,b=1,故z=2+i.
10.如图,已知复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形ABCD的三个顶点A,B,C,求这个正方形的第四个顶点对应的复数.
解:设正方形的第四个点D对应的复数为x+yi(x,y∈R),
法一:对应的复数为(x+yi)-(1+2i)=(x-1)+(y-2)i,
对应的复数为(-1-2i)-(-2+i)=1-3i.
因为,所以(x-1)+(y-2)i=1-3i,
即x-1=1,y-2=-3,解得x=2,y=-1,
故点D对应的复数为2-i.
- 5 -
法二:因为点A与点C关于原点对称,
所以原点O为正方形的中心,
于是(-2+i)+(x+yi)=0,
故x=2,y=-1,故点D对应的复数为2-i.
二、B组
1.如图,在复平面内,复数z1,z2对应的向量分别是,则复数z1-z2=( )
A.-1+2i B.-2-2i
C.1+2i D.1-2i
解析:由题意,知z1=-2-i,z2=i,所以z1-z2=-2-2i,故选B.
答案:B
2.若复数z=x+yi(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值为( )
A.2 B.4 C.4 D.16
解析:由|z-4i|=|z+2|得|x+(y-4)i|=|x+2+yi|,所以x2+(y-4)2=(x+2)2+y2,即x+2y=3,于是2x+4y=2x+22y≥2=2=4,当且仅当x=2y=时,2x+4y取得最小值4.
答案:C
3.若复数z满足z-1=cos θ+isin θ,则|z|的最大值为 .
解析:因为z-1=cos θ+isin θ,所以z=(1+cos θ)+isin θ,
故|z|==2,即|z|的最大值为2.
答案:2
4.已知实数x,y满足条件z=x+yi(i为虚数单位),则|z-1+2i|的最大值与最小值之和为 .
解析:作出不等式组对应的可行域,如图中阴影部分所示.
|z-1+2i|表示可行域中的点到点(1,-2)的距离.
- 5 -
根据图象,得最小值为点(1,-2)到直线x+y=0的距离,最大值为点(1,-2)到点(3,8)的距离,
即|z-1+2i|min=,|z-1+2i|max==2,
故|z-1+2i|min+|z-1+2i|max=+2.
答案:+2
5.在复平面内,A,B,C三点分别对应复数1,2+i,-1+2i.
(1)求对应的复数;
(2)判断△ABC的形状.
解:(1)因为A,B,C三点对应的复数分别为1,2+i,-1+2i,
所以对应的复数分别为1,2+i,-1+2i(O为坐标原点),
所以=(1,0),=(2,1),=(-1,2).
于是=(1,1),=(-2,2),
=(-3,1).
即对应的复数为1+i,对应的复数为-2+2i,对应的复数为-3+i.
(2)因为||=,||=,||=,
所以||2+||2=10=||2,
又因为||≠||,
故△ABC是以角A为直角的直角三角形.
6.导学号40294025已知|z1|=1,|z2|=1,|z1+z2|=,求|z1-z2|.
解:法一:在复平面内以原点O为起点作出z1,z2对应的向量,如图,则z1+z2对应向量,z1-z2对应向量.由题意||=1,||=1,||=,可得∠OZ1Z=120°,∴∠Z2OZ1=60°,
- 5 -
∴在△Z2OZ1中,||=1,即|z1-z2|=1.
法二:设z1=a+bi,z2=c+di(a,b,c,d∈R).则由题意,知a2+b2=1,c2+d2=1,(a+c)2+(b+d)2=3.
∴2(ac+bd)=1.
∵|z1-z2|2=(a-c)2+(b-d)2=a2+b2+c2+d2-2(ac+bd)=1+1-1=1,∴|z1-z2|=1.
- 5 -