26.1.3二次函数的图象(三)
九年级下册 编号05
【学习目标】1.会画二次函数的顶点式的图象;
2.掌握二次函数的性质;
【学习过程】
一、知识链接:
1.将二次函数的图象向上平移2个单位,所得图象的解析式为 。
2.将抛物线的图象向左平移3个单位后的抛物线的解析式为 。
二、自主学习
在右图中做出的图象:
观察:1. 抛物线开口向 ;
顶点坐标是 ;对称轴是直线 。
2. 抛物线和的形状 ,位置 。(填“相同”或“不同”)
3. 抛物线是由如何平移得到的?答:
。
三、合作交流
平移前后的两条抛物线值变化吗?为什么?
答: 。
四、知识梳理
结合上图和课本第9页例3归纳:
(一)抛物线的特点:
1.当时,开口向 ;当时,开口 ;
2. 顶点坐标是 ;3. 对称轴是直线 。
(二)抛物线与形状 ,位置不同,是由平移得到的。
二次函数图象的平移规律:左 右 ,上 下 。
(三)平移前后的两条抛物线值 。
五、跟踪训练
1.二次函数的图象可由的图象( )
A.向左平移1个单位,再向下平移2个单位得到
B.向左平移1个单位,再向上平移2个单位得到
C.向右平移1个单位,再向下平移2个单位得到
D.向右平移1个单位,再向上平移2个单位得到
2.抛物线开口 ,顶点坐标是 ,对称轴是 ,当x= 时,y有最 值为 。
开口方向
顶点
对称轴
3.填表:
4.函数的图象可由函数的图象沿x轴向 平移 个单位,再沿y轴向 平移 个单位得到。
5.若把函数的图象分别向下、向左移动2个单位,则得到的函数解析式为 。
6. 顶点坐标为(-2,3),开口方向和大小与抛物线相同的解析式为( )
A. B.
C. D.
7.一条抛物线的形状、开口方向与抛物线相同,对称轴和抛物线相同,且顶点纵坐标为0,求此抛物线的解析式.