26.1.4二次函数的图象
九年级下册 编号07
【学习目标】
1.能通过配方把二次函数化成的形式,从而确定开口方向、对称轴和顶点坐标。
2.熟记二次函数的顶点坐标公式;
3.会画二次函数一般式的图象.
【学习过程】
一、知识链接:
1.抛物线的顶点坐标是 ;对称轴是直线 ;当= 时有最 值是 ;当 时,随的增大而增大;当 时,随的增大而减小。
2. 二次函数解析式中,很容易确定抛物线的顶点坐标为 ,所以这种形式被称作二次函数的顶点式。
二、自主学习:
(一)、问题:(1)你能直接说出函数 的图像的对称轴和顶点坐标吗?
(2)你有办法解决问题(1)吗?
解:
的顶点坐标是 ,对称轴是 .
(3)像这样我们可以把一个一般形式的二次函数用 的方法转化为 式从而直接得到它的图像性质.
(4)用配方法把下列二次函数化成顶点式:
① ② ③
(5)归纳:二次函数的一般形式可以用配方法转化成顶点式: ,因此抛物线的顶点坐标是 ;对称轴是 ,
(6)用顶点坐标和对称轴公式也可以直接求出抛物线的顶点坐标和对称轴,这种方法叫做公式法。
用公式法写出下列抛物线的开口方向、对称轴及顶点坐标。
① ② ③
(二)、用描点法画出的图像.
(1)顶点坐标为 ;
(2)列表:顶点坐标填在 ;(列表时一般以对称轴为中心,对称取值.)
…
…
…
(3)描点,并连线:
(4)观察:①图象有最 点,即= 时,有最 值是 ;
② 时,随的增大而增大; 时随的增大而减小。
③该抛物线与轴交于点 。
④该抛物线与轴有 个交点.
三、合作交流
求出顶点的横坐标后,可以用哪些方法计算顶点的纵坐标?计算并比较。