1.1 等腰三角形(二)
一、问题引入:
1. 在等腰三角形中作出一些相等的线段(角平分线.中线.高),你能发现其中一些相等的线段吗?你能证明你的结论吗?
2、 等腰三角形的两底的角平分线相等吗?怎样证明.
已知:
求证:
证明:
得出定理: .
问题:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明它们,并与同伴交流.
二、基础训练;
1. 请同学们阅读P6的问题(1).(2),由此得到什么结论?
2. 我们知道等腰三角形的两个底角相等,反过来此命题成立吗?并与同伴交流,由此得到什么结论?
得出定理: ;简称: .
3. 请同学们阅读课本“想一想”,这一结论成立吗?你能证明吗?若不会证明,请看课本小明是怎样证明的,这种证明问题的方法与以前的证明方法相同吗?若不同应称为什么方法?
三、例题展示:
如图,△ABC中,D.E分别是AC.AB上的点,BD与CE
相交于点O,给出下列四个条件①∠EBO=∠DCO;
②∠BEO=∠CDO;③BE=CD;④OB=OC,上述四个条
件中,哪两个条件可判定是等腰三角形,请你写出一种情形,并加以证明.
四、课堂检测:
1. 已知:如图,在△ABC中,则图中等腰直角三角形共有( )
A.3个 B.4个 C.5个 D.6个
第3题
第2题
第4题
第1题
2. 已知:如图,在△ABC中,AB=AC, ∠BAC=1200, D.E是BC上两点,且AD=BD,AE=CE,猜想△ADE是 三角形.
3. 如图,在△ABC中,∠ABC与∠ACB的平分线交与点O,若AB=12,AC=18,BC=24,则△ABC的周长为( )
A.30 B.36 C.39 D.42
4. 在△ABC中,AB=AC, ∠A=360,BD.CE是三角形的平分线且交于点O,则图中共有 个等腰三角形.
5. 如图:下午14:00时,一条船从处出发,以28海里/小时的速度,向正北航行,16:00时,轮船到达B处,从A处测得灯塔C在北偏西280,从B处测得灯塔C在北偏西560,求B处到灯塔C的距离.
6.中考真题:同一底上的两底边相等的梯形是等腰梯形吗?如果是,请给出证明;如果不是,请给出反例.