八年级(下)期末综合试卷
一、选择题(每题2分,共20分)
1.在、、、、、中分式的个数有( )
A、2个 B、3个 C、4个 D、5个
2.已知点在函数的图象上,则下列关系式正确的是( )
A、 B、 C、 D、
3.某地区100个家庭收入按从高到低是5800,……,10000元各不相同,在输入计算时,把最大的数错误地输成100000元,则依据错误的数据算出的平均数比实际平均数多( )
(A)900元(B)942元(C)90000元(D)9000元
4.下列命题: (1)相等的角是对顶角. (2) 同位角相等 (3) 直角三角形的两个锐角互余.
(4) 若两条线段不相交,则两条线段平行. 其中正确的命题个数有------------- ( )
(A) 1个 (B) 2个 (C) 3个 (D) 4个
5. 下列语句不是命题的是 ( )
(A) 三角形的三个内角和是180° (B) 角是几何图形
(C) 对顶角相等吗? (D) 两个锐角的和是一个直角
6. 下列图形一定相似的是-------------------------------------------------------------( )
(A) 两个矩形 (B) 两个等腰梯形
(C) 有一个内角相等的两个菱形 (D) 对应边成比例的两个四边形
7. 如图,ΔABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足ΔAPC与ΔACB相似的条件是( )
(A)①②③ (B)①③④ (C)②③④ (D)①②④
8. 如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是---------------( )
(A) (B) (C) (D)
9. 如图,在平行四边形ABCD中,O1、O2、O3分别是对角线BD上的三点,且BO1=O1O2=O2O3=O3D,连接AO1并延长交BC于点E,连接EO3并延长交AD于点F,则AF:DF等于( )
(A) 19:2 (B) 9:1 (C)8:1 (D) 7:1
(第7题图) (第8题图) (第9题图)
10.某公司在布置联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条。如图所示:在RT△ABC中,AC=30cm,BC=40cm.依此裁下宽度为1cm的纸条,若使裁得的纸条的长都不小于5cm,则能裁得的纸条的张数 ------------------------------( )
(A) 24 (B) 25 (C) 26 (D) 27
(第10题图) (第17题图) (第18题图)
二、填空题(共25分)
11. 19、若有增根,则这个方程的增根是______________.
12、已知一个函数具有以下条件:⑴该图象经过第四象限;⑵当时, y随x的增大而增大;⑶该函数图象不经过原点。请写出一个符合上述条件的函数关系式: 。
13、不等式组的解集是xBC),若AB=4cm,则AC的长为 。
16. 若,且a+b+c≠0,则k的值为 .
17.在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE、CF的交点,则∠ABE= ,∠BHC= 。
18.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是 cm。
19. 如图,ΔABC与ΔADB中,∠ABC=∠ADB=90°,AC=5cm,AB=4cm,如果图中的两个直角三角形相似,则AD的长= 。
20. 如图,已知 DE ∥BC,AD = 15 cm , BD = 20cm , AC = 28 cm , 则 AE = ;S△ADE:S四边形DBCE= 。
21. =8, 则=________________.
22. 如图,⊿ABC中,∠C = ,CD是斜边AB上的高,AD = 9,BD = 4,
那么 CD= ,AC = .
(第19题图) (第20题图) (第21题图) (第22题图)
三、解答题(第23题8分,第24、25题各6分,共20分)
23.如图,D为ΔABC内一点,E为ΔABC外一点,且∠1=∠2,∠3=∠4.
找出图中的相似三角形并说明理由。
24.利用位似图形的方法把四边形ABCD放大2倍成四边形A1B1C1D1 。
25.填写推理的依据。
(1)已知:AB∥CD,AD∥BC。求证:∠B=∠D。
证明:∵AB∥CD,AD∥BC( 已知 )
∴∠A+∠B=180,∠A+∠D=180°( )
∴∠B=∠D ( )
(2)已知:DF∥AC,∠A=∠F。求证:AE∥BF。
证明:∵DF∥AC (已知)
∴∠FBC=∠ ( )
∵∠A=∠F(已知)
∴∠A=∠FBC ( )
∴AE∥FB ( )
四、解答题(第26、27题每题8分,第28题9分,共25分)
26.
如图所示,在ΔABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x。(1)当x为何值时,PQ∥BC?(2)当,求的值;(3)ΔAPQ能否与ΔCQB相似?若能,求出AP的长;若不能,请说明理由。
27.在一次测量旗杆高度的活动中,某小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面。若AB=1.6m,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度。
28如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6),
点C是线段AB的中点。请问在x轴上是否存在一点P,使得以P、A、C为顶点的三角形与△AOB相似?若存在,求出P点坐标(写出计算的过程);若不存在,说明理由。
B
C
O
A