北师大版九年级数学上册单元测试卷全套及答案(共6套)
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 《第 2 章 一元二次方程》单元测试卷 一、精心选一选,相信自己的判断!(每小题 3 分,共 30 分) 1.方程 2x2﹣3=0 的一次项系数是( ) A.﹣3 B.2 C.0 D.3 2.方程 x2=2x 的解是( ) A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2= 3.方程 x2﹣4=0 的根是( ) A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4 4.若一元二次方程 2x(kx﹣4)﹣x2+6=0 无实数根,则 k 的最小整数值是( ) A.﹣1 B.0 C.1 D.2 5.用配方法解一元二次方程 x2﹣4x﹣5=0 的过程中,配方正确的是( ) A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 6.在一幅长 80cm,宽 50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如 图所示,如果要使整个挂图的面积是 5400cm2,设金色纸边的宽为 xcm,那么 x 满足的方程 是( ) A.x2+130x﹣1400=0 B.x2+65x﹣350=0 C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0 7.已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是( ) A.6 B.8 C.10 D.12 8.方程 x2﹣9x+18=0 的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A.12 B.12 或 15 C.15 D.不能确定 9.若关于一元二次方程 x2+2x+k+2=0 的两个根相等,则 k 的取值范围是( ) A.1 B.1 或﹣1 C.﹣1 D.2 10.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠 了 132 件,那么全组共有( )名学生.2 A.12 B.12 或 66 C.15 D.33 二、耐心填一填:(把答案填放相应的空格里.每小题 3 分,共 15 分). 11.写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是 2:__________. 12.﹣1 是方程 x2+bx﹣5=0 的一个根,则 b=__________,另一个根是__________. 13.方程(2y+1)(2y﹣3)=0 的根是__________. 14.已知一元二次方程 x2﹣3x﹣1=0 的两根为 x1、x2,x1+x2=__________. 15.用换元法解方程 +2x=x2﹣3 时,如果设 y=x2﹣2x,则原方程可化为关于 y 的一 元二次方程的一般形式是__________. 三、按要求解一元二次方程: 16.按要求解一元二次方程 (1)4x2﹣8x+1=0(配方法) (2)7x(5x+2)=6(5x+2)(因式分解法) (3)3x2+5(2x+1)=0(公式法) (4)x2﹣2x﹣8=0. 四、细心做一做: 20.有一面积为 150m2 的长方形鸡场,鸡场的一边靠墙(墙长 18 m),另三边用竹篱笆围成, 如果竹篱笆的总长为 35 m,求鸡场的长与宽各为多少? 21.如图所示,在一块长为 32 米,宽为 15 米的矩形草地上,在中间要设计﹣横二竖的等宽 的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少 米?3 22.某企业 2006 年盈利 1500 万元,2008 年克服全球金融危机的不利影响,仍实现盈利 2160 万元.从 2006 年到 2008 年,如果该企业每年盈利的年增长率相同,求: (1)该企业 2007 年盈利多少万元? (2)若该企业盈利的年增长率继续保持不变,预计 2009 年盈利多少万元? 23.中华商场将进价为 40 元的衬衫按 50 元售出时,每月能卖出 500 件,经市场调查,这种 衬衫每件涨价 4 元,其销售量就减少 40 件.如果商场计划每月赚得 8000 元利润,那么售价 应定为多少?这时每月应进多少件衬衫? 24.如图 1,在 Rt△ABC 中,∠C=90°,AC=8m,BC=6m,点 P 由 C 点出发以 2m/s 的速度向 终点 A 匀速移动,同时点 Q 由点 B 出发以 1m/s 的速度向终点 C 匀速移动,当一个点到达终 点时另一个点也随之停止移动. (1)经过几秒△PCQ 的面积为△ACB 的面积的 ? (2)经过几秒,△PCQ 与△ACB 相似? (3)如图 2,设 CD 为△ACB 的中线,那么在运动的过程中,PQ 与 CD 有可能互相垂直吗? 若有可能,求出运动的时间;若没有可能,请说明理由.4 北师大新版九年级上册《第 2 章 一元二次方程》单元测试卷 一、精心选一选,相信自己的判断!(每小题 3 分,共 30 分) 1.方程 2x2﹣3=0 的一次项系数是( ) A.﹣3 B.2 C.0 D.3 【考点】一元二次方程的一般形式. 【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且 a≠0)特别要注意a≠0 的条件.这是在做题过程中容易忽视的知识点.在一般形式中 ax2 叫二次项,bx 叫一次项, c 是常数项.其中 a,b,c 分别叫二次项系数,一次项系数,常数项. 【解答】解:方程 2x2﹣3=0 没有一次项,所以一次项系数是 0.故选 C. 【点评】要特别注意不含有一次项,因而一次项系数是 0,注意不要说是没有. 2.方程 x2=2x 的解是( ) A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2= 【考点】解一元二次方程-因式分解法;因式分解-提公因式法. 【专题】因式分解. 【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根. 【解答】解:x2﹣2x=0 x(x﹣2)=0 ∴x1=0,x2=2. 故选 C. 【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法 因式分解,可以求出方程的根. 3.方程 x2﹣4=0 的根是( ) A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4 【考点】解一元二次方程-直接开平方法. 【分析】先移项,然后利用数的开方解答. 【解答】解:移项得 x2=4,开方得 x=±2, ∴x1=2,x2=﹣2. 故选 C. 【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b 同号 且 a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c 同号且 a≠0).法则:要把方程化为“左 平方,右常数,先把系数化为 1,再开平方取正负,分开求得方程解”; (2)运用整体思想,会把被开方数看成整体; (3)用直接开方法求一元二次方程的解,要仔细观察方程的特点. 4.若一元二次方程 2x(kx﹣4)﹣x2+6=0 无实数根,则 k 的最小整数值是( ) A.﹣1 B.0 C.1 D.2 【考点】根的判别式;一元二次方程的定义. 【分析】先把方程变形为关于 x 的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方 程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数 k.5 【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0, 当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0, 解得 k> ,则满足条件的最小整数 k 为 2. 故选 D. 【点评】本题考查了一元二次方程 ax2+bx+c=0(a≠0,a,b,c 为常数)根的判别式.当△ >0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有 实数根. 5.用配方法解一元二次方程 x2﹣4x﹣5=0 的过程中,配方正确的是( ) A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 【考点】解一元二次方程-配方法. 【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案. 【解答】解:移项得:x2﹣4x=5, 配方得:x2﹣4x+22=5+22, (x﹣2)2=9, 故选 D. 【点评】本题考查了解一元二次方程,关键是能正确配方. 6.在一幅长 80cm,宽 50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如 图所示,如果要使整个挂图的面积是 5400cm2,设金色纸边的宽为 xcm,那么 x 满足的方程 是( ) A.x2+130x﹣1400=0 B.x2+65x﹣350=0 C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0 【考点】由实际问题抽象出一元二次方程. 【专题】几何图形问题. 【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可. 【解答】解:依题意得:(80+2x)(50+2x)=5400, 即 4000+260x+4x2=5400, 化简为:4x2+260x﹣1400=0, 即 x2+65x﹣350=0. 故选:B. 【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再 进行化简. 7.已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是( )6 A.6 B.8 C.10 D.12 【考点】勾股定理. 【分析】设这三边长分别为 x,x+1,x+2,根据勾股定理可得出(x+2)2=(x+1)2+x2,解 方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可. 【解答】解:设这三边长分别为 x,x+1,x+2, 根据勾股定理得:(x+2)2=(x+1)2+x2 解得:x=﹣1(不合题意舍去),或 x=3, ∴x+1=4,x+2=5, 则三边长是 3,4,5, ∴三角形的面积= ××4=6; 故选:A. 【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定 理得出方程是解决问题的关键. 8.方程 x2﹣9x+18=0 的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A.12 B.12 或 15 C.15 D.不能确定 【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系. 【专题】分类讨论. 【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得 到其周长. 【解答】解:解方程 x2﹣9x+18=0,得 x1=6,x2=3 ∵当底为 6,腰为 3 时,由于 3+3=6,不符合三角形三边关系 ∴等腰三角形的腰为 6,底为 3 ∴周长为 6+6+3=15 故选 C. 【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论. 9.若关于一元二次方程 x2+2x+k+2=0 的两个根相等,则 k 的取值范围是( ) A.1 B.1 或﹣1 C.﹣1 D.2 【考点】根的判别式. 【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可. 【解答】解:根据题意得△=22﹣4(k+2)=0, 解得 k=﹣1. 故选 C. 【点评】本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0, 方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数 根. 10.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠 了 132 件,那么全组共有( )名学生. A.12 B.12 或 66 C.15 D.33 【考点】一元二次方程的应用. 7 【分析】设全组共有 x 名学生,每一个人赠送 x﹣1 件,全组共互赠了 x(x﹣1)件,共互 赠了 132 件,可得到方程,求解即可. 【解答】解:设全组共有 x 名学生,由题意得 x(x﹣1)=132 解得:x1=﹣11(不合题意舍去),x2=12, 答:全组共有 12 名学生. 故选:A. 【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关 键. 二、耐心填一填:(把答案填放相应的空格里.每小题 3 分,共 15 分). 11.写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是 2:﹣3x2+2x﹣3=0. 【考点】一元二次方程的一般形式. 【专题】开放型. 【分析】根据一元二次方程的一般形式和题意写出方程即可. 【解答】解:由题意得:﹣3x2+2x﹣3=0, 故答案为:﹣3x2+2x﹣3=0. 【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0 (a,b,c 是常数且 a≠0)特别要注意 a≠0 的条件.在一般形式中 a,b,c 分别叫二次项 系数,一次项系数,常数项. 12.﹣1 是方程 x2+bx﹣5=0 的一个根,则 b=﹣4,另一个根是 5. 【考点】一元二次方程的解. 【分析】把x=﹣1 代入方程得出关于 b 的方程 1+b﹣2=0,求出 b,代入方程,求出方程的解 即可. 【解答】解:∵x=﹣1 是方程 x2+bx﹣5=0 的一个实数根, ∴把 x=﹣1 代入得:1﹣b﹣5=0, 解得 b=﹣4, 即方程为 x2﹣4x﹣5=0, (x+1)(x﹣5)=0, 解得:x1=﹣1,x2=5, 即 b 的值是﹣4,另一个实数根式 5. 故答案为:﹣4,5; 【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的 解. 13.方程(2y+1)(2y﹣3)=0 的根是 y1=﹣ ,y2= . 【考点】解一元二次方程-因式分解法. 【专题】因式分解. 【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求 得. 【解答】解:∵(2y+1)(2y﹣3)=0, ∴2y+1=0 或 2y﹣3=0,8 解得 y1= ,y2= . 【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复 杂问题的一个原则. 14.已知一元二次方程 x2﹣3x﹣1=0 的两根为 x1、x2,x1+x2=3. 【考点】根与系数的关系. 【分析】根据一元二次方程 ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为 x1, x2,则 x1+x2=﹣ ,代入计算即可. 【解答】解:∵一元二次方程 x2﹣3x﹣1=0 的两根是 x1、x2, ∴x1+x2=3, 故答案为:3. 【点评】本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根 为 x1,x2,则 x1+x2=﹣ ,x1•x2= . 15.用换元法解方程 +2x=x2﹣3 时,如果设 y=x2﹣2x,则原方程可化为关于 y 的一 元二次方程的一般形式是 y2﹣3y﹣1=0. 【考点】换元法解分式方程. 【专题】换元法. 【分析】此题考查了换元思想,解题的关键是要把 x2﹣2x 看做一个整体. 【解答】解:原方程可化为: ﹣(x2﹣2x)+3=0 设 y=x2﹣2x ﹣y+3=0 ∴1﹣y2+3y=0 ∴y2﹣3y﹣1=0. 【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换 元的整体. 三、按要求解一元二次方程: 16.按要求解一元二次方程 (1)4x2﹣8x+1=0(配方法) (2)7x(5x+2)=6(5x+2)(因式分解法) (3)3x2+5(2x+1)=0(公式法) (4)x2﹣2x﹣8=0. 【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式 法. 9 【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平 方,即可将等号左边的代数式写成完全平方形式. (2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解. (3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发 现其结果大于 0,故利用求根公式可得出方程的两个解. (4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可. 【解答】解:(1)4x2﹣8x+1=0(配方法) 移项得,x2﹣2x=﹣ , 配方得,x2﹣2x+1=﹣ +1, (x﹣1)2= , ∴x﹣1=± ∴x1=1+ ,x2=1﹣ . (2)7x(5x+2)=6(5x+2)(因式分解法) 7x(5x+2)﹣6(5x+2)=0, (5x+2)(7x﹣6)=0, ∴5x+2=0,7x﹣6=0, ∴x1=﹣ ,x2= ; (3)3x2+5(2x+1)=0(公式法) 整理得,3x2+10x+5=0 ∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40, ∴x= = = , ∴x1= ,x2= ; (4)x2﹣2x﹣8=0. (x+4)(x﹣2)=0, ∴x+4=0,x﹣2=0, ∴x1=﹣4,x2=2. 【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元 一次方程. 四、细心做一做: 20.有一面积为 150m2 的长方形鸡场,鸡场的一边靠墙(墙长 18 m),另三边用竹篱笆围成, 如果竹篱笆的总长为 35 m,求鸡场的长与宽各为多少?10 【考点】一元二次方程的应用. 【专题】几何图形问题. 【分析】设养鸡场的宽为 xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程 求解. 【解答】解:设养鸡场的宽为 xm,则长为(35﹣2x),由题意得 x(35﹣2x)=150 解这个方程 ;x2=10 当养鸡场的宽为 时,养鸡场的长为 20m 不符合题意,应舍去, 当养鸡场的宽为 x1=10m 时,养鸡场的长为 15m. 答:鸡场的长与宽各为 15m,10m. 【点评】本题考查的是一元二次方程的应用,难度一般. 21.如图所示,在一块长为 32 米,宽为 15 米的矩形草地上,在中间要设计﹣横二竖的等宽 的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少 米? 【考点】一元二次方程的应用. 【专题】几何图形问题. 【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好 构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解. 【解答】解:设小路的宽应是 x 米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米, 由题意得(32﹣2x)(15﹣x)=32×15×(1﹣ ) 即 x2﹣31x+30=0 解得 x1=30 x2=1 ∵路宽不超过 15 米 ∴x=30 不合题意舍去 答:小路的宽应是 1 米. 【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.11 22.某企业 2006 年盈利 1500 万元,2008 年克服全球金融危机的不利影响,仍实现盈利 2160 万元.从 2006 年到 2008 年,如果该企业每年盈利的年增长率相同,求: (1)该企业 2007 年盈利多少万元? (2)若该企业盈利的年增长率继续保持不变,预计 2009 年盈利多少万元? 【考点】一元二次方程的应用. 【专题】增长率问题. 【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率). (1)可先求出增长率,然后再求 2007 年的盈利情况. (2)有了 2008 年的盈利和增长率,求出 2009 年的就容易了. 【解答】解:(1)设每年盈利的年增长率为 x, 根据题意,得 1500(1+x)2=2160. 解得 x1=0.2,x2=﹣2.2(不合题意,舍去). ∴1500(1+x)=1500(1+0.2)=1800. 答:2007 年该企业盈利 1800 万元. (2)2160(1+0.2)=2592. 答:预计 2009 年该企业盈利 2592 万元. 【点评】本题考查的是增长率的问题.增长率问题,一般形式为 a(1+x)2=b,a 为起始时 间的有关数量,b 为终止时间的有关数量. 23.中华商场将进价为 40 元的衬衫按 50 元售出时,每月能卖出 500 件,经市场调查,这种 衬衫每件涨价 4 元,其销售量就减少 40 件.如果商场计划每月赚得 8000 元利润,那么售价 应定为多少?这时每月应进多少件衬衫? 【考点】一元二次方程的应用. 【专题】销售问题. 【分析】设涨价 4x 元,则销量为(500﹣40x),利润为(10+4x),再由每月赚 8000 元,可 得方程,解方程即可. 【解答】解:设涨价 4x 元,则销量为(500﹣40x),利润为(10+4x), 由题意得,(500﹣40x)×(10+4x)=8000, 整理得,5000+2000x﹣400x﹣160x2=8000, 解得:x1= ,x2= , 当 x1= 时,则涨价 10 元,销量为:400 件; 当 x2= 时,则涨价 30 元,销量为:200 件. 答:当售价定为 60 元时,每月应进 400 件衬衫;售价定为 80 元时,每月应进 200 件衬 衫. 【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题 的关键,注意分情况讨论思想的应用. 24.如图 1,在 Rt△ABC 中,∠C=90°,AC=8m,BC=6m,点 P 由 C 点出发以 2m/s 的速度向 终点 A 匀速移动,同时点 Q 由点 B 出发以 1m/s 的速度向终点 C 匀速移动,当一个点到达终 点时另一个点也随之停止移动.12 (1)经过几秒△PCQ 的面积为△ACB 的面积的 ? (2)经过几秒,△PCQ 与△ACB 相似? (3)如图 2,设 CD 为△ACB 的中线,那么在运动的过程中,PQ 与 CD 有可能互相垂直吗? 若有可能,求出运动的时间;若没有可能,请说明理由. 【考点】一元二次方程的应用;相似三角形的判定. 【专题】几何动点问题. 【分析】(1)分别表示出线段 PC 和线段 CQ 的长后利用 S△PCQ= S△ABC 列出方程求解; (2)设运动时间为 ts,△PCQ 与△ACB 相似,当△PCQ 与△ACB 相似时,可知∠CPQ=∠A 或 ∠CPQ=∠B,则有 = 或 = ,分别代入可得到关于 t 的方程,可求得 t 的值; (3)设运动时间为 ys,PQ 与 CD 互相垂直,根据直角三角形斜边上的中线的性质以及等腰 三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么 = ,依此列出比 例式 = ,解方程即可. 【解答】解:(1)设经过 x 秒△PCQ 的面积为△ACB 的面积的 , 由题意得:PC=2xm,CQ=(6﹣x)m, 则 ×2x(6﹣x)= × ×8×6, 解得:x=2 或 x=4. 故经过 2 秒或 4 秒,△PCQ 的面积为△ACB 的面积的 ; (2)设运动时间为 ts,△PCQ 与△ACB 相似. 当△PCQ 与△ACB 相似时,则有 = 或 = , 所以 = ,或 = , 解得 t= ,或 t= . 因此,经过 秒或 秒,△OCQ 与△ACB 相似;13 ( 3)有可能. 由勾股定理得 AB=10. ∵CD 为△ACB 的中线, ∴∠ACD=∠A,∠BCD=∠B, 又 PQ⊥CD, ∴∠CPQ=∠B, ∴△PCQ∽△BCA, ∴ = , = , 解得 y= . 因此,经过 秒,PQ⊥CD. 【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股 定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条 件,找出合适的等量关系,列出方程,再求解.

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料