27.2相似三角形(第3课时)
【学习目标】
1、掌握相似三角形的判定方法,理解相似三角形的性质,
2、能对三角形的性质与判定进行简单的运用
【自学指导】判定
1、相似三角形的判定方法
⑴、平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
⑵、三边对应成比例,两三角形相似.
⑶、两边对应成比例且夹角相等,两三角形相似.
⑷、两角对应相等,两三角形相似。
【尝试练习】
⑴、如图,△ABC与△ADE都是等腰三角形,AD=AE,AB=AC,∠DAB=∠CAE。
求证:△ABC∽△ADE。
⑵、如图ABCD是正方形,E是CD上一点,F是BC延长线上一点,且CE=CF,BE延长线交DF于G。求证:△BGF∽△DGE。
⑶、如图已知点D为斜边BA上的点,点E为AC的中点,分别延长ED和CB交于F。
求证:△CDF∽△DBF。
⑷、如图△ABC中,∠C,∠B的平分线相交于O,过O作AO的垂线与边AB、AC分别交于D、E,
求证:△BDO∽△BOC∽△OEC。
⑸、如图AD为△ABC的∠A的平分线,由D向∠C的外角平分线作垂线与AC的延长线交于F点,由D作∠B的平分线的垂线与AB交于E,
求证:△ADE∽△AFD。
反思:两个直角三角形要相似,除了一个直角外,还需要那些条件就可以。
【思维拓展】:
要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?