27.1图形的相似(第1课时)
【学习目标】
1. 经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.
2. 掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.
3.能根据相似比进行有关计算.
【自学指导】第一节
1.相似三角形的定义及记法
三角对应相等,三边对应成比例的两个三角形叫做相似三角形.如△ABC与△DEF相似,记作△ABC∽△DEF。
注意:其中对应顶点要写在对应位置,如A与D,
B与E,C与F相对应.AB∶DE等于相似比.
2.想一想
如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?
3.议一议
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
归纳:
【典例分析】
例1:有一块呈三角形形状的草坪,其中一边的长是20m,在这个草坪的图纸上,这条边长5cm,其他两边的长都是3.5cm,求该草坪其他两边的实际长度.(14m)
例2:如图,已知△ABC∽△ADE,AE=50cm,EC=30cm,BC=70cm,∠BAC=45°,∠ACB=40°,求(1)∠AED和∠ADE的度数;(2)DE的长.
5.想一想:在例2的条件下,图中有哪些线段成比例?
练习:等腰直角三角形ABC与等腰直角三角形A´B´C´相似,相似比为3∶1,已知斜边AB=5cm
,求△A´B´C´斜边A´B´上的高.