4.1 因式分解
教学目标:
(一)教学知识点
使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.
(二)能力训练要求
通过观察,发现因式分解与整式乘法的关系,培养学生的观察能力和语言概括能力.
(三)情感与价值观要求
通过观察,推导因式分解与整式乘法的关系,让学生了解事物间的因果联系.
教学重、难点:
教学重点:
1.理解因式分解的意义.
2.识别因式分解与整式乘法的关系.
教学难点:
通过观察,归纳因式分解与整式乘法的关系.
教学过程:
一、创设情境,导入新课
[师]大家会计算(a+b)(a-b)吗?
[生]会.(a+b)(a-b)=a2-b2.
[ 师 ] 对 , 这 是 大 家 学 过 的 平 方 差 公 式 , 我 们 是 在 整 式 乘 法 中 学 习 的 . 从 式 子
(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边
呢?即a2-b2=(a+b)(a-b)是否成立呢?
[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个
式子交换一下位置还成立.
[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内
容:因式分解的问题.
二、明确目标,互助探究:
1、想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运
算有什么不同?你还能举一些类似的例子加以说明吗?
[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是因式
分解,这两种过程正好相反.
[生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)
来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.
[师]非常棒.下面我们一起来总结一下.如:m(a+b+c)=ma+mb+mc (1)
ma+mb+mc=m(a+b+c) (2)
联系:等式(1)和(2)是同一个多项式的两种不同表现形式.
区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.
等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.
即ma+mb+mc m(a+b+c).
所以,因式分解与整式乘法是相反方向的变形.
2、议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.
[师]大家可以观察a3-a与993-99这两个代数式.
[生]a3-a=a(a2-1)=a(a-1)(a+1)
3、做一做
(1)计算下列各式:
①(m+4)(m-4)=__________;
②(y-3)2=__________;
③3x(x-1)=__________;
④m(a+b+c)=__________;
⑤a(a+1)(a-1)=__________.
[生]解:①(m+4)(m-4)=m2-16;
②(y-3)2=y2-6y+9;
③3x(x-1)=3x2-3x;
④m(a+b+c)=ma+mb+mc;
⑤a(a+1)(a-1)=a(a2-1)=a3-a.
(2)根据上面的算式填空:
①3x2-3x=( )( );
②m2-16=( )( );
③ma+mb+mc=( )( );
④y2-6y+9=( )2.
⑤a3-a=( )( ).
[生]把等号左右两边的式子调换一下即可.即:
①3x2-3x=3x(x-1);
②m2-16=(m+4)(m-4);
③ma+mb+mc=m(a+b+c);
④y2-6y+9=(y-3)2;⑤a3-a=a(a2-1)=a(a+1)(a-1).
[师]能分析一下两个题中的形式变换吗?
[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等
号左边是多项式的形式,等号右边是整式乘积的形式.
[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式
是因式分解.
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解
(factorization).
4、练习
下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;
(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);
(4)x2-3x+2=x(x-3)+2.
[生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不
是因式分解;
(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;
(3)和(2)相同,是因式分解;
(4)是因式分解.
[师]大家认可吗?
[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一
个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.
三、总结归纳,课堂反馈
本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整
式乘法与因式分解的关系是相反方向的变形.