八年级数学下册第十七章勾股定理同步练习(共8套新人教版)
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
小专题(二) 利用勾股定理解决最短路径问题 ‎ ‎ 几何体中最短路径基本模型如下:‎ 图例 圆柱 则AB2=B′A2+B′B2‎ 长 方 体 阶梯 问题 基本 思路 将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.‎ 1. 如图所示,一只蚂蚁处在正方体的一个顶点A处,它想爬到顶点B处寻找食物.若这个正方体的边长为1,则这只蚂蚁所爬行的最短路程为.‎ 2‎ 第1题图   第2题图 ‎2.(2018·黄冈)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)‎ ‎3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是2.60m(精确到0.01 m).‎ 2‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料