单元教学目标:1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。初步学会根据字母所取的值,求含有字母式子的值。2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程。3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。培养学生根据具体情况,灵活选择算法的意识和能力。第一课时:用字母表示数(一)教学内容:教材P44-P46例1-例3 做一做,练习十第1-3题教学目的:1、使学生理解用字母表示数的意义和作用。2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。3、使学生能正确进行乘号的简写,略写,知道一个数的平方的含义及读写法。4、在学习中感受到用字母表示数的优越性,激发对数学学习的兴趣。教学重点:理解用字母表示数的意义和作用教学难点:能正确进行乘号的简写,略写。教学准备:投影仪教学过程:一、初步感知用字母表示数的意义教学例1。1、投影出示例1(1):引导学生仔细观察两行图中,数的排列规律。问:每行图中的数是按什么规律排列的?(指名口答)2、学生自己看书解答例1的(2)、(3)小题提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)师:在生活中、在数学中,我们经常用字母来表示数。今天这节课我们一起来学习用字母表示数。问:你还见过那些用符号或字母表示数的例子?如:扑克牌,行程A、B两地,C大调…….二、新授:1、学习用字母表示运算定律和性质的意义和方法。教学例2:(1)学生用文字叙述自己印象最深的一个运算定律。(2)如果用字母a、 b或 c表示几个数,请你用字母表示这个运算定律。(3)当用字母表示数的时候,你有什么感觉?看书45页“用字母表示…….”这一段。(4)你还能用字母表示其它的运算定律和性质吗?请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c减法的性质:a-b-c=a-(b+c) 除法的性质:a÷b÷c=a÷(b×c)2、教学字母与字母书写。引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)a×b=b×a (a×b)×c=a×(b×c)可以写成:a•b=b•a或ab=ba (a•b)•c=a•(b•c)或(ab) c=a(bc) (a+b)×c=a×c+b×c可以写成:(a+b)•c=a•c+b•c或(a+b)c=ac+bc 其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。3、教学用字母表示计算公式的意义和方法。教学例3(1):师:字母不但可以表示运算定律还可以表示公式、及数量关系。用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?学生先自己试写,然后小组交流,看书讨论。问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?(2)字母和数字之间的乘号省略后,谁写在前面?a2表示什么?2a表示什么?师强调:a 表示两个a相乘,读作a的平方。口答结果:3的平方 5的平方 6的平方省略数字和字母之间的乘号后,数字一定要写在字母的前面。4、练习:省略乘号写出下面各式。x×x m×m 0.1×0.1 a×6 3×n χ×8 a×c教学例3(2):学生自学并完成相关练习。两生板演。师强调书写格式。三、巩固练习:1、完成做一做1、2题。要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。2、练习十:第1-3题 先独立解答后,再集体评议。四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)板书设计: 用字母表示数(一)乘法交换律:a×b=b×a S=a×a C=a×4可以写成: a•b=b•a或ab=ba S =a2 C=4a课后小记: 这是学生在小学阶段第一次系统接触代数知识。这一单元学生掌握的好坏将直接影响到他们初中代数知识的学习。因此,我将其放在十分重要的地位。 在学习周长与面积的计算公式时反馈出学生C与S不分。为此,我用形象的比喻帮助学生记忆:摸图形的周长时就要用手沿边画一周,所以是C;摸面积是时就要用手把物体的表面全部都摸到,所以是S。通过这种动作形象记忆法,绝大多数同学能够正确区别这两个字母的含义。 今天十分紧张的在一节课内完成了全部教学内容,但从作业反馈来看却差强人意。问题主要表现在以下几方面: 1、省略乘号写出各式子问题较大。如b×1应该简写成b,而学生却常常会写成1b,没想到1乘任何数还得原数;x×x应该简写成x2,可学生却往往习惯于只省略乘号写成xx;(a+b)×2应该简写为2(a+b),而学生却常常会写成(a+b)2,忘记将数字放在字母的前面。 2、作业格式错误。部分学生求图形周长和面积时列式结果均正确,但却不喜欢将已知数据代入计算公式求值的格式。看来,这中间还需要一段适应调整的过程。