(暑假预习)人教版五年级数学上册知识点汇总
第一单元 小数乘法
1、小数乘整数:
@意义——求几个相同加数的和的简便运算。
如:1.5×3 表示求 3 个 1.5 的和的简便运算(或 1.5 的 3 倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共
有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
@意义——就是求这个数的几分之几是多少。
如:1.5×0.8 就是求 1.5 的十分之八是多少(或求 1.5 的 1.8 倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共
有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的 0 要去掉,也就是把小数化简;位数不够时,
要用 0 占位。
3、规律:
一个数(0 除外)乘大于 1 的数,积比原来的数大;
一个数(0 除外)乘小于 1 的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法; ⑵进一法; ⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:
@ 加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
@ 减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@ 乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@ 除法:
a÷b÷c=a÷(b×c)
a÷(b×c) =a÷b÷c
第二单元 位 置
1、数对:
由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为
列数和行数,即“先列后行”。 2、作用:
一组数对确定唯一 一个点的位置。经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中 X 轴上的坐标表示列,y 轴上的坐标表示行。如:
数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一
条竖线。(有一个数不确定,不能确定一个点)
3、图形左右平移行数不变;图形上下平移列数不变。
第三单元 小数除法
1、小数除法的意义:
已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3 表示已知两个因数的积 0.6 与其中的一个因数 0.3,求另一个因数
的运算。
2、小数除以整数的计算方法:
小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。
整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。
3、除数是小数的除法的计算方法:
先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数
除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用 0 补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一
定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0 除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:
一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这
样的小数叫做循环小数。
@ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232……
的循环节是 32.
7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小
数,叫做无限小数。
第四单元 可能性
1、有些事件的发生是确定的,有些是不确定的。
可能 (不能确定)
可能性 不可能
一定
2、事件发生的机会(或概率)有大小。
大 数量多
可能性
(确定)
小 数量少
第五单元 简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a 可以写作 a·a 或 a2 读作 a 的平方。
注: 2a 表示 a+a ;a2 表示 a×a
3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。
7、10 个数量关系式:
@ 加法;
和=加数+加数 ;
一个加数=和-两一个加数
@ 减法:
差=被减数-减数 ;
被减数=差+减数 ;
减数=被减数-差
@乘法:
积=因数×因数 ;
一个因数=积÷另一个因数
@ 除法:
商=被除数÷除数 ;
被除数=商×除数 ;
除数=被除数÷商
第六单元 多边形的面积
1、长方形:
@ 周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】
字母表示:C=(a+b)×2
@面积=长×宽
字母表示:S=ab
2、正方形:
@周长=边长×4
字母表示:C=4a
@面积=边长×边长
字母表示:S=a2
3、平行四边形的面积=底×高
字母表示: S=ah4、三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】
字母表示: S=ah÷2
5、梯形的面积=(上底+下底)×高÷2
字母表示: S=(a+b)h÷2
上底=面积×2÷高-下底,
下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)
6、平行四边形面积公式推导:
剪拼、平移、割补法
7、三角形面积公式推导:
旋转、拼凑法
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的 2 倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积=底×高,所以三角形面积=底×高÷2
8、梯形面积公式推导:旋转、拼凑法
9、两个完全一样的梯形可以拼成一个平行四边形;
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的 2 倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
10、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的 2 倍。
11、长方形框架拉成平行四边形,周长不变,面积变小。
12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进
行计算(整体-部分=另一部分)。
第七单元 数学广角——植树问题
1、只载一端(封闭线路植树问题)
如图:
间隔数=棵树 间隔长×间隔数=全长
或 全长÷间隔长=间隔数 全长÷间隔数=间隔长
2、两端都载:
如图:
间隔数+1=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长
3、两端都不载
如图:
间隔数-1=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长