由莲山课件提供http://www.5ykj.com/ 资源全部免费
第9讲 直线与圆锥曲线的位置关系
1.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有( )
A.1条 B.2条
C.3条 D.4条
解析:选C.结合图形分析可知(图略),满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).
2.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( )
A.(1,) B.(1,]
C.(,+∞) D.[,+∞)
解析:选C.因为双曲线的一条渐近线方程为y=x,则由题意得>2,
所以e==>=.
3.双曲线C1的中心在原点,焦点在x轴上,若C1的一个焦点与抛物线C2:y2=12x的焦点重合,且抛物线C2的准线交双曲线C1所得的弦长为4,则双曲线C1的实轴长为( )
A.6 B.2
C. D.2
解析:选D.设双曲线C1的方程为-=1(a>0,b>0).由题意可知抛物线C2的焦点为(3,0),准线方程为x=-3,即双曲线中c=3,a2+b2=9,将x=-3代入双曲线方程,解得y=±,又抛物线C2的准线交双曲线C1所得的弦长为4,所以2×=4,与a2+b2=9联立得,a2+2a-9=0,解得a=,故双曲线C1的实轴长为2,故选D.
4.经过椭圆+y2=1的一个焦点作倾斜角为45°的直线l,交椭圆于A,B两点.设O为坐标原点,则·等于( )
A.-3 B.-
C.-或-3 D.±
解析:选B.依题意,当直线l经过椭圆的右焦点(1,0)时,其方程为y-0=tan 45°(x-1),即y=x-1,代入椭圆方程+y2=1并整理得3x2-4x=0,解得x=0或x=,所以两个交点坐标分别为(0,-1),,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以·=-,同理,直线l经过椭圆的左焦点时,也可得·=-.
5.(2016·太原模拟)已知中心为原点,一个焦点为F(0,5)的椭圆,截直线y=3x-2所得弦中点的横坐标为,则该椭圆方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选C.由已知得c=5,设椭圆的方程为+=1,联立得
消去y得(10a2-450)x2-12(a2-50)x+4(a2-50)-a2(a2-50)=0,设直线y=3x-2与椭圆的交点坐标分别为(x1,y1),(x2,y2),由根与系数的关系得x1+x2=,由题意知x1+x2=1,即=1,解得a2=75,所以该椭圆方程为+=1,故选C.
6.过抛物线y2=2px(p>0)的焦点F,斜率为的直线交抛物线于A,B两点,若=λ(λ>1),则λ的值为( )
A.5 B.4
C. D.
解析:选B.根据题意设A(x1,y1),B(x2, y2),由=λ,得=λ,故-y1=λy2,即λ=.设直线AB的方程为y=,联立直线与抛物线方程,消元得y2-py-p2=0.故y1+y2=p,y1·y2=-p2,=++2=-,即-λ-+2=-.又λ>1,故λ=4.
7.(2016·宜宾模拟)已知椭圆+=1(a>b>0)的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率为________.
解析:由题意得|PF2|=,又|F1F2|=|PF2|,所以2c=,因为b2=a2-c2,所以c2+2ac-a2=0,所以e2+2e-1=0,解得e=-1±,又00)的离心率为,椭圆的短轴端点与双曲线-x2=1的焦点重合,过点P(4,0)且不垂直于x轴的直线l与椭圆C相交于A,B两点.
(1)求椭圆C的方程;
(2)求·的取值范围.
解:(1)由题意知e==,
所以e2===,
所以a2=b2.
因为双曲线-x2=1的焦点坐标为(0,±),
所以b=,所以a2=4,
所以椭圆C的方程为+=1.
(2)当直线l的倾斜角为0°时,不妨令A(-2,0),B(2,0),则·=-4,
当直线l的倾斜角不为0°时,设其方程为x=my+4,
由⇒(3m2+4)y2+24my+36=0,
由Δ>0⇒(24m)2-4×(3m2+4)×36>0⇒m2>4,
设A(my1+4,y1),B(my2+4,y2).
因为y1+y2=-,y1y2=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以·=(my1+4)(my2+4)+y1y2=m2y1y2+4m(y1+y2)+16+y1y2=-4,
因为m2>4,所以·∈.
综上所述,·的取值范围为.
1.(2015·高考全国卷Ⅰ)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )
A. B.
C. D.
解析:选A.由题意知a=,b=1,c=,
所以 F1(-,0),F2(,0),
所以 =(--x0,-y0),=(-x0,-y0).
因为 ·<0,所以 (--x0)(-x0)+y<0,
即x-3+y<0.
因为点M(x0,y0)在双曲线上,所以-y=1,
即x=2+2y,
所以2+2y-3+y<0,所以-<y0<.故选A.
2.(2015·高考山东卷)过双曲线C:-=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为________.
解析:如图所示,不妨设与渐近线平行的直线l的斜率为,又直线l过右焦点F(c,0),则直线l的方程为y=(x-c).因为点P的横坐标为2a,代入双曲线方程得-=1,化简得y=-b或y=b(点P在x轴下方,故舍去),故点P的坐标为(2a,-b),代入直线方程得-b=(2a-c),化简可得离心率e==2+.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案:2+
3.(2016·衡水调研)已知椭圆C的对称中心为原点O,焦点在x轴上,左、右焦点分别为F1和F2,且|F1F2|=2,点在该椭圆上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的面积为.求以F2为圆心且与直线l相切的圆的方程.
解:(1)由题意知c=1,2a=+ =4,a=2,
故椭圆C的方程为+=1.
(2)①当直线l⊥x轴时,可取A,B,△AF2B的面积为3,不符合题意.
②当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),代入椭圆方程得:
(3+4k2)x2+8k2x+4k2-12=0,显然Δ>0成立,
设A(x1,y1),B(x2,y2),
则x1+x2=-,x1·x2=.
可得|AB|=,
又圆F2的半径r=,
所以△AF2B的面积为|AB|r
==,
化简得17k4+k2-18=0,得k=±1,
所以r=,圆的方程为(x-1)2+y2=2.
4.(2015·高考湖南卷)已知抛物线C1 :x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1 与C2的公共弦的长为2.过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.
(1)求C2的方程;
(2)若|AC|=|BD|,求直线l的斜率.
解:(1)由C1:x2=4y知其焦点F的坐标为(0,1).
因为F也是椭圆C2的一个焦点,所以a2-b2=1.①
又C1与C2的公共弦的长为2,C1与C2都关于y轴对称,且C1的方程为x2=4y,
由此易知C1与C2的公共点的坐标为,
所以+=1.②
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
联立①②,得a2=9,b2=8.
故C2的方程为+=1.
(2)如图,设A(x1,y1),B(x2,y2),C(x3,y3),
D(x4,y4).
因为与同向,且|AC|=|BD|,所以=,从而x3-x1=x4-x2,即x1-x2=x3-x4,于是(x1+x2)2-4x1x2=(x3+x4)2-4x3x4.③
设直线l的斜率为k,则l的方程为y=kx+1.
由得x2-4kx-4=0.
而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=-4.④
由得(9+8k2)x2+16kx-64=0.
而x3,x4是这个方程的两根,所以
x3+x4=-,x3x4=-.⑤
将④⑤代入③,得16(k2+1)=+,
即16(k2+1)=,所以(9+8k2)2=16×9,
解得k=±,即直线l的斜率为±.
由莲山课件提供http://www.5ykj.com/ 资源全部免费