3.1用树状图或表格求概率
1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率为( )
A. B. C. D.
2.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色小球的概率是_______.
3.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.
妞妞和爸爸出相同手势的概率是___________.
4.三个袋中各装有个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有个黄球和一个红球的概率为_________.
5.已知函数,令,,,,,,,,,,可得函数图象上的十个点.在这十个点中随机取两个点,,则两点在同一反比例函数图象上的概率是___________.
6.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘转出了红色,转盘转出了蓝色,或者转盘转出了蓝色,转盘转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对小明、小芳公平吗?试说明理由.
红
蓝
红
黄
转盘A
红
蓝
黄
转盘B
7.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.
(1)请你通过列表(或画树状图)计算甲获胜的概率.
(2)你认为这个游戏公平吗?为什么?
答案:1.A 2. 3. 4. 5.
2
6.解:用列表法将所有可能出现的结果表示如下:
转盘B
转盘A
红
蓝
黄
红
(红,红)
(红,蓝)
(红,黄)
蓝
(蓝,红)
(蓝,蓝)
(蓝,黄)
红
(红,红)
(红,蓝)
(红,黄)
黄
(黄,红)
(黄,蓝)
(黄,黄)
所以,所有可能出现的结果共有12种.
(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小芳获胜的概率是;但只有2种情况才可能得到绿色,配成绿色的概率是,即小明获胜的概率是.而,故小芳获胜的可能性大,这个“配色”游戏对小明、小芳双方是不公平的.
7.解:(1)利用列表法得出所有可能的结果,如下表:
1
2
3
4
5
5
10
15
20
6
6
12
18
24
7
7
14
21
28
8
8
16
24
32
由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为.
(2)这个游戏对双方不公平,因为甲获胜的概率,乙获胜的概率,,所以,游戏对双方是不公平的.
2