由莲山课件提供http://www.5ykj.com/ 资源全部免费
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。
高考大题专攻练
12.函数与导数(B组)
大题集训练,练就慧眼和规范,占领高考制胜点!
1.已知函数f(x)=ln(2ax+a2-1)-ln(x2+1),其中a∈R. 世纪金榜导学号92494448
(1)求f(x)的单调区间.
(2)是否存在a的值,使得f(x)在[0,+∞)上既存在最大值又存在最小值?若存在,求出a的取值范围;若不存在,请说明理由.
【解析】(1)f(x)=ln(2ax+a2-1)-ln(x2+1)
=ln.
设g(x)=,g′(x)=-.
①当a=0时,f(x)无意义,所以a≠0.
②当a>0时,f(x)的定义域为.
令g′(x)=0,得x1=-a,x2=,g(x)与g′(x)的情况如表:
x
(-∞,x1)
x1
(x1,x2)
x2
(x2,+∞)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
g′(x)
-
0
+
0
-
g(x)
↘
g(x1)
↗
g(x2)
↘
-(-a)=>0,所以>-a.
-=-0,
所以f(x)在区间[0,+∞)内为增函数,
又f(0)=1>0,所以f(x)在区间[0,+∞)内没有零点.
(2)当x>0时,f(x)-1>xln(x+1)等价于>ln(x+1),记g(x)=ex-(x+1),
则g′(x)=ex-1,当x>0时,g′(x)>0,
所以当x>0时,g(x)在区间(0,+∞)内单调递增,
所以g(x)>g(0)=0,即ex>x+1,两边取自然对数,得x>ln(x+1)(x>0),
所以要证明>ln(x+1)(x>0),只需证明≥x(x>0),
即证明当x>0时,ex-x2+(2-e)x-1≥0,①
设h(x)=ex-x2+(2-e)x-1,则h′(x)=ex-2x+2-e,
令φ(x)=ex-2x+2-e,
则φ′(x)=ex-2,当x∈(0,ln2)时,φ′(x)0.
所以φ(x)在区间(0,ln2)内单调递减,在区间(ln2,+∞
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
)内单调递增,又φ(0)=3-e>0,φ(1)=0,0