七年级数学下册第六章实数课件及作业(共16套新人教版)
加入VIP免费下载

本文件来自资料包: 《七年级数学下册第六章实数课件及作业(共16套新人教版)》 共有 16 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 周滚动练(6.1~6.3) (时间:45 分钟  满分:100 分) 一、选择题(每小题 4 分,共 28 分) 1.下列计算正确的是 (A) A. 22=2 B. 22=±2 C. 42=2 D. 42=±2 2.416 49的平方根是 (B) A.24 7 B.±2 53 7 C.±24 7 D.2 53 7 3.一个正数 m 的平方根是 n+2 与 n-6,则下列选项中正确的是 (C) A.m=2,n=1 B.m=1,n=2 C.m=16,n=2 D.m=8,n=2 4.下列说法错误的是 (B) A.2 是 8 的立方根 B.±4 是 64 的立方根 C.1 3是1 9的算术平方根 D.16 是 256的算术平方根 5.四个数 0,1, 2,1 2中,无理数是 (A) A. 2 B.1 C.1 2 D.0 6.下列说法中,正确的是 (D) A.0 是正整数 B. 3+1 是有理数 C. 2 2 是分数2 D.22 7 是有理数 7.下列各组数中,互为相反数的是 (C) A.3 与 3-1 B.3 与|-3| C.-3 与 ( - 3)2 D.32 与(-3)2 二、填空题(每小题 4 分,共 24 分) 8.已知 0.0004=0.02,则- 0.04= -0.2 . 9.已知(x2+y2+1)2-4=0,则 x2+y2= 1 . 10.用计算器探索:已知按一定规律排列的一组数:1, 1 2, 1 3,…, 1 19, 1 20,…,如果从中选出若 干个数,使它们的和大于 3,那么至少需要选 5 个数. 11.已知地球储水总量约为 1.42×1018 m3,而淡水总量仅占地球储水总量的 2.53%,则地球上 淡水总量用科学记数法表示约为 3.5926×1016 m3.(用计算器计算) 12.M 是个位数字不为零的两位数,将 M 的个位数字与十位数字互换后,得另一个两位数 N, 若 M-N 恰是某正整数的立方,则这样的两位数共 6 个. 13.在9 4,π, 16,0.1010010001, 15,3 64中,无理数有 2 个. 三、解答题(共 48 分) 14.(6 分)计算:3 -64 + 9 + 1 - (4 5)2 . 解:原式=-4+3+3 5=-2 5. 15.(8 分)已知实数 2a-1 的平方根是±3, 2b + 3=5,求 a+b 的平方根. 解:因为 2a-1 的平方根是±3,所以 2a-1=32=9,则 a=5; 因为 2b + 3=5,所以 2b+3=52=25,则 b=11. 则 a+b=16,所以 a+b 的平方根为±4.3 16.(10 分)某小区为了促进全民健身活动的开展,决定在一块面积约为 1000 m2 的正方形空 地上建一个篮球场.已知篮球场的面积为 420 m2,其中长是宽的28 15倍,篮球场的四周必须留出 1 m 宽的空地,请你通过计算说明能否按要求在这块空地上建一个篮球场? 解:设篮球场的宽为 x m,那么长为28 15x m, 根据题意,得28 15x·x=420,所以 x2=225, 因为 x 为正数,所以 x=15, 又因为28 15x+2= (28 15 × 15 + 2)2 = 900 < 1000, 所以能按要求在这块空地上建一个篮球场. 17.(12 分)已知 M=n - 4 m + 3是 m+3 的算术平方根,N=2m - 4n + 3 n - 2是 n-2 的立方根,试求 M-N 的值. 解:由已知得 n-4=2,2m-4n+3=3,解得 m=12,n=6, ∴M= 12 + 3 = 15,N=3 6 - 2 = 3 4, ∴M-N= 15 - 3 4. 18.(12 分)阅读理解:已知给定顺序的 n 个数 a1,a2,…,an,记 Sk=a1+a2+a3+…+ak 为其中前 k 个数的和(k=1,2,3,…,n),定义 A=(S1+S2+S3+…Sn)+n 为它们的“特殊和”. (1)如 a1=2,a2=3,a3=3,则 S1=2,S2= 5 ,S3= 8 ,特殊和 A= 18 ; (2)若有 99 个数 a1,a2,…,a99 的“特殊和”为 100,求新的 100 个数 100,a1,a2,…,a99 的 “特殊和”.4 解:(2)∵S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S99=a1+a2+a3+…+a99,且 A=S1+S2+…+S99+99=100,∴ 99a1+98a2+97a3+…+a99+99=100. 则新的 100 个数:100,a1,a2,…,a99 满 足:S'1=100,S'2=100+a1,S'3=100+a1+a2,S'4=100+a1+a2+a3,…,S'100=100+a1+a2+a3+…+a99,∴ 其特殊和 A'=S'1+S'2+S'3+…+S'100+100=100×100+99a1+98a2+97a3+…+a99+100=10000+(100- 99)+100=10101. 答:100 个数 100,a1,a2,…,a99 的“特殊和”为 10101.

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料