人教版九年级上册第22章二次函数单元测试
考试分值:120分;考试时间:100分钟;
姓名:___________班级:___________考号:___________
题号
一
二
三
总分
得分
评卷人
得 分
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列函数中属于二次函数的是( )
A.y=x(x+1) B.x2y=1 C.y=2x2﹣2(x2+1) D.y=
2.(3分)若y=(a2+a)是二次函数,那么( )
A.a=﹣1或a=3 B.a≠﹣1且a≠0 C.a=﹣1 D.a=3
3.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是( )
A. B. C. D.
4.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:
x
…
﹣2
﹣1
0
1
2
…
y
…
﹣11
﹣2
1
﹣2
﹣5
…
由于粗心,他算错了其中一个y值,则这个错误的数值是( )
A.﹣11 B.﹣2 C.1 D.﹣5
5.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是( )
A.函数有最小值
B.c<0
C.当﹣1<x<2时,y>0
D.当x<时,y随x的增大而减小
6.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为( )
A.﹣ B.﹣ C.﹣1 D.﹣2
7.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是( )
A.k≤4且k≠3 B.k<4且k≠3 C.k<4 D.k≤4
8.(3分)对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为( )
A.m≥﹣2 B.﹣4≤m≤﹣2 C.m≥﹣4 D.m≤﹣4或m≥﹣2
9.(3分)正实数x,y满足xy=1,那么的最小值为( )
A. B. C.1 D.
10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
评卷人
得 分
二.填空题(共6小题,满分18分,每小题3分)
11.(3分)若y=(m+2)x+3x﹣2是二次函数,则m的值是 .
12.(3分)直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是 .
13.(3分)请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x轴的下方,那么这个二次函数的解析式可以为 .
14.(3分)已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是 .
15.(3分)点A(2,y1)、B(3,y2)是二次函数y=﹣(x﹣1)2+2的图象上两点,则y1 y2.
16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x
…
﹣1
0
1
4
…
y
…
10
5
2
5
…
则当x≥1时,y的最小值是 .
评卷人
得 分
三.解答题(共8小题,满分72分)
17.(8分)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、CD.
(1)求抛物线的函数表达式;
(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.
18.(8分)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.
(1)求直线AB的解析式;
(2)求y与x的函数关系式;
(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的;
(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由.
19.(8分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.
(1)抛物线的对称轴为x= (用含m的代数式表示);
(2)若AB∥x轴,求抛物线的表达式;
(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp,yp),yp≤2,求m的取值范围.
20.(8分)已知一条抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB的长是4;它还与过点C(1,﹣2)的直线有一个交点是D(2,﹣3).
(1)求这条直线的函数解析式;
(2)求这条抛物线的函数解析式;
(3)若这条直线上有P点,使S△PAB=12,求点P的坐标.
21.(8分)某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).
(1)写出y与x的函数关系式 ;
(2)求出W与x的函数关系式(不必写出x的取值范围)
22.(10分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)
23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣1,0),点C(0,2)
(1)求抛物线的函数解析式;
(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.
24.(12分)如图1,在平面直角坐标系xOy中,直线l:
与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列函数中属于二次函数的是( )
A.y=x(x+1) B.x2y=1 C.y=2x2﹣2(x2+1) D.y=
【分析】整理成一般形式后,利用二次函数的定义即可解答.
【解答】解:A、y=x2+x,是二次函数;
B、y=,不是二次函数;
C、y=﹣2,不是二次函数;
D、不是整式,不是二次函数;
故选:A.
【点评】本题考查二次函数的定义.
2.(3分)若y=(a2+a)是二次函数,那么( )
A.a=﹣1或a=3 B.a≠﹣1且a≠0 C.a=﹣1 D.a=3
【分析】根据二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.
【解答】解:根据题意,得:a2﹣2a﹣1=2
解得a=3或﹣1
又因为a2+a≠0即a≠0或a≠﹣1
所以a=3.
故选:D.
【点评】解题关键是掌握二次函数的定义.
3.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是( )
A. B. C. D.
【分析】先根据二次函数的图象开口向下可知a<0,根据对称轴x=﹣<0,可得b<0,再由函数图象经过原点可知c=0,进而得到一次函数y=bx+c在坐标系中的大致图象.
【解答】解:∵二次函数的图象开口向下,
∴a<0,
∵对称轴x=﹣<0,
∴b<0,
∵函数图象经过原点,
∴c=0,
∴一次函数y=bx+c在坐标系中的大致图象是经过原点且从左往右下降的直线,
故选:D.
【点评】本题主要考查了二次函数以及一次函数的图象,解题时注意:正比例函数的图象是经过原点的一条直线.
4.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:
x
…
﹣2
﹣1
0
1
2
…
y
…
﹣11
﹣2
1
﹣2
﹣5
…
由于粗心,他算错了其中一个y值,则这个错误的数值是( )
A.﹣11 B.﹣2 C.1 D.﹣5
【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.
【解答】解:由函数图象关于对称轴对称,得
(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,
把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得
,
解得,
函数解析式为y=﹣3x2+1
x=2时y=﹣11,
故选:D.
【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.
5.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是( )
A.函数有最小值
B.c<0
C.当﹣1<x<2时,y>0
D.当x<时,y随x的增大而减小
【分析】观察可判断函数有最小值;由抛物线可知当﹣1<x<2时,可判断函数值的符号;由抛物线与y轴的交点,可判断c的符号;由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.
【解答】解:A、由图象可知函数有最小值,故正确;
B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;
C、由抛物线可知当﹣1<x<2时,y<0,故错误;
D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;
故选:C.
【点评】本题考查了二次函数图象的性质,解析式的系数的关系.关键是掌握各项系数与抛物线的性质之间的联系.
6.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为( )
A.﹣ B.﹣ C.﹣1 D.﹣2
【分析】设A(x1,0),B(x2,0),C(0,t),由题意可得t=2;在直角三角形ABC中,利用射影定理求得OC2=OA•OB,即4=|x1x2|=﹣x1x2;然后根据根与系数的关系即可求得a的值.
【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),
∵二次函数y=ax2+bx+2的图象过点C(0,t),
∴t=2;
∵AC⊥BC,
∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,
根据韦达定理知x1x2=,
∴a=﹣.
故选:A.
【点评】本题主要考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+2与关于x的方程ax2+bx+2=0间的转换关系.
7.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是( )
A.k≤4且k≠3 B.k<4且k≠3 C.k<4 D.k≤4
【分析】由于不知道函数是一次函数还是二次函数,需对k进行讨论.当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;
当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当△≥0时,二次函数与x轴都有交点,解△≥0,求出k的范围.
【解答】解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;
当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,
当22﹣4(k﹣3)≥0,
k≤4
即k≤4时,函数的图象与x轴有交点.
综上k的取值范围是k≤4.
故选:D.
【点评】本题考察了二次函数、一次函数的图象与x轴的交点、一次不等式的解法.解决本题的关键是对k的值分类讨论.
8.(3分)对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为( )
A.m≥﹣2 B.﹣4≤m≤﹣2 C.m≥﹣4 D.m≤﹣4或m≥﹣2
【分析】分三种情况进行讨论:对称轴分别为x<0、0≤x<2、x≥2时,得出当0<x≤2时所对应的函数值,判断正误.
【解答】解:对称轴为:x=﹣=﹣,y==1﹣,
分三种情况:①当对称轴x<0时,即﹣<0,m>0,满足当0<x≤2时的函数值总是非负数;
②当0≤x<2时,0≤﹣<2,﹣4<m≤0,当1﹣>0时,﹣2<m≤2,满足当0<x≤2时的函数值总是非负数;
当1﹣<0时,不能满足当0<x≤2时的函数值总是非负数;
∴当﹣2<m≤0时,当0<x≤2时的函数值总是非负数,
③当对称轴﹣≥2时,即m≤﹣4,如果满足当0<x≤2时的函数值总是非负数,则有x=2时,y≥0,
4+2m+1≥0,
m≥﹣,
此种情况m无解;
故选:A.
【点评】本题考查了二次函数的图象及性质,根据其自变量的取值确定字母系数的取值范围,解决此类问题:首先要计算出顶点坐标,再根据对称轴的位置并与图象相结合得出取值.
9.(3分)正实数x,y满足xy=1,那么的最小值为( )
A. B. C.1 D.
【分析】根据已知条件将所求式子消元,用配方法将式子配方,即可求出最小值.
【解答】解:由已知,得x=,
∴=+=(﹣)2+1,
当=,即x=时,
的值最小,最小值为1.
故选:C.
【点评】
本题考查了二次函数求最大(小)值的运用,关键是将所求式子消元,配方.
10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.
【解答】解:∵抛物线的对称轴为直线x=﹣=2,
∴b=﹣4a,即4a+b=0,(故①正确);
∵当x=﹣3时,y<0,
∴9a﹣3b+c<0,
即9a+c<3b,(故②错误);
∵抛物线与x轴的一个交点为(﹣1,0),
∴a﹣b+c=0,
而b=﹣4a,
∴a+4a+c=0,即c=﹣5a,
∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵抛物线开口向下,
∴a<0,
∴8a+7b+2c>0,(故③正确);
∵对称轴为直线x=2,
∴当﹣1<x<2时,y的值随x值的增大而增大,
当x>2时,y随x的增大而减小,(故④错误).
故选:B.
【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
二.填空题(共6小题,满分18分,每小题3分)
11.(3分)若y=(m+2)x+3x﹣2是二次函数,则m的值是 2 .
【分析】根据二次函数的定义求解即可.
【解答】解:由题意,得
m2﹣2=2,且m+2≠0,
解得m=2,
故答案为:2.
【点评】本题考查了二次函数的定义,利用二次函数的定义是解题关键.
12.(3分)直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是 1<x<2 .
【分析】从图上可知,mx+n<ax2+bx+c,则有x>1或x<﹣;根据ax2+bx+c<0,可知﹣1<x<2;综上,不等式mx+n<ax2+bx+c<0的解集是1<x<2.
【解答】解:因为mx+n<ax2+bx+c<0,由图可知,1<x<2.
【点评】此题将图形与不等式相结合,考查了同学们对不等式组的解集的理解和读图能力,有一定的难度,读图时要仔细.
13.(3分)请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x轴的下方,那么这个二次函数的解析式可以为 y=﹣x2﹣2x﹣1 .
【分析】由题意可知:写出的函数解析式满足a<0,﹣=﹣1,c<0,由此举例得出答案即可.
【解答】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).
∵图象的开口向下,∴a<0,可取a=﹣1;
∵对称轴是直线x=﹣1,∴﹣=﹣1,得b=2a=﹣2;
∵与y轴的交点在x轴的下方,∴c<0,可取c=﹣1;
∴函数解析式可以为:y=﹣x2﹣2x﹣1.
故答案为:y=﹣x2﹣2x﹣1.
【点评】本题考查了二次函数的性质,用到的知识点:
二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣;当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;二次函数与y轴交于点(0,c).
14.(3分)已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是 y1<y2<y3 .
【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x>1时,y随x的增大而增大,即可得出答案.
【解答】解:∵y=3(x﹣1)2+k,
∴图象的开口向上,对称轴是直线x=1,
A(﹣4,y3)关于直线x=﹣2的对称点是(6,y3),
∵2<3<6,
∴y1<y2<y3,
故答案为y1<y2<y3.
【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.
15.(3分)点A(2,y1)、B(3,y2)是二次函数y=﹣(x﹣1)2+2的图象上两点,则y1 > y2.
【分析】先确定对称轴是:x=1,由知a=﹣1,抛物线开口向下,当x>1时,y随x的增大而减小,根据横坐标3>2得:
y1>y2.
【解答】解:∵二次函数对称轴为:x=1,a=﹣1,
∴当x>1时,y随x的增大而减小,
∵3>2>1,
∴y1>y2,
故答案为:>.
【点评】本题考查了二次函数图象上的点的坐标特征,明确二次函数的增减性:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大; ②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小.
16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:
x
…
﹣1
0
1
4
…
y
…
10
5
2
5
…
则当x≥1时,y的最小值是 1 .
【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.
【解答】解:∵由表可知,当x=﹣1时,y=10,当x=0时,y=5,当x=1时,y=2,
∴,解得,
∴抛物线的解析式为y=x2﹣4x+5,
∴其对称轴为直线x=﹣=﹣=2.
∵x≥1,
∴当x=2时,y最小===1.
故答案为:1.
【点评】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.
三.解答题(共8小题,满分72分)
17.(8分)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、CD.
(1)求抛物线的函数表达式;
(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.
【分析】(1)设抛物线的解析式为y=a(x﹣x1)(x﹣x2),再把点代入即可得出解析式;
(2)分两种情况:①当点E在直线CD的抛物线上方;②当点E在直线CD的抛物线下方;连接CE,过点E作EF⊥CD,再由三角函数得出点E的坐标.
【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),
∴设抛物线的解析式为y=a(x﹣x1)(x﹣x2),
∴y=a(x+2)(x﹣4),
∴﹣8a=4,
∴a=﹣,
∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4,
(2)①当点E在直线CD的抛物线上方,记E′,连接CE′,过点E′作E′F′⊥CD,垂足为F′,
由(1)得OC=4,
∵∠ACO=∠E′OF′,
∴tan∠ACO=tan∠E′CF′,
∴==,
设线段E′F′=h,则CF′=2h,
∴点E′(2h,h+4),
∵点E′在抛物线上,
∴﹣(2h)2+2h+4=h+4,
∴h1=0(舍去),h2=,
∴E′(1,);
②当点E在直线CD的抛物线下方;
同①的方法得,E(3,),
综上,点E的坐标为(1,),(3,).
【点评】本题考查了用待定系数法求二次函数的解析式,掌握二次函数的解析式三种不同的形式是解题的关键.
18.(8分)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.
(1)求直线AB的解析式;
(2)求y与x的函数关系式;
(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的;
(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由.
【分析】(1)设直线AB的解析式为y=kx+b,用待定系数法即可求解;
(2)根据S△OMP=,即可求解;
(3)根据面积之间关系列出等式即可求解;
(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,先求出D点坐标,看是否在直线y=
上即可判断;
【解答】解:(1)设直线AB的解析式为y=kx+b,
A点坐标为(24,0),B为(0,12),
把A、B两点的坐标代入上式,得:,
解得,
∴y=;
(2)∵S△OMP=,
∴y=•x
即y=﹣;
(3)∵S△AOB=,
∴S△AOB=18,即y=18,
当﹣,
解得:x=6;
(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,
当x=﹣=6时,S△POM=y有最大值.
此时OP=6,OM=12﹣x=6
∴△OMP是等腰直角三角形.
∵将△POM沿PM所在直线翻折后得到△POM.
∴四边形OPDM是正方形
∴D(6,6),
把D(6,6)代入y=
x=6时,y=﹣×6+12=9≠6
∴点D不在直线AB上.
【点评】本题考查了二次函数的最值及矩形的性质,难度较大,关键是正确理解与把握题中给出的已知信息.
19.(8分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.
(1)抛物线的对称轴为x= m (用含m的代数式表示);
(2)若AB∥x轴,求抛物线的表达式;
(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp,yp),yp≤2,求m的取值范围.
【分析】(1)根据抛物线的对称轴为直线x=﹣,代入数据即可得出结论;
(2)由AB∥x轴,可得出点B的坐标,进而可得出抛物线的对称轴为x=2,结合(1)可得出m=2,将其代入抛物线表达式中即可;
(3)分m>0及m<0两种情况考虑,依照题意画出函数图象,利用数形结合即可得出m的取值范围.
【解答】解:(1)抛物线的对称轴为x==m.
故答案为:m.
(2)当x=0时,y=mx2﹣2m2x+2=2,
∴点A(0,2).
∵AB∥x轴,且点B在直线x=4上,
∴点B(4,2),抛物线的对称轴为直线x=2,
∴m=2,
∴抛物线的表达式为y=2x2﹣8x+2.
(3)当m>0时,如图1.
∵A(0,2),
∴要使0≤xp≤4时,始终满足yp≤2,只需使抛物线y=mx2﹣2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.
∴m≥2;
当m<0时,如图2,
在0≤xp≤4中,yp≤2恒成立.
综上所述,m的取值范围为m<0或m≥2.
【点评】
本题考查了二次函数的性质、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)牢记抛物线的对称轴为直线x=﹣;(2)根据二次函数的性质找出对称轴为x=2;(3)分m>0及m<0两种情况考虑.
20.(8分)已知一条抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB的长是4;它还与过点C(1,﹣2)的直线有一个交点是D(2,﹣3).
(1)求这条直线的函数解析式;
(2)求这条抛物线的函数解析式;
(3)若这条直线上有P点,使S△PAB=12,求点P的坐标.
【分析】(1)由于所求直线经过点C(1,﹣2)和D(2,﹣3),利用待定系数法即可确定直线的解析式;
(2)由于抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB的长是4,由此可以确定A、B的坐标,还经过D(2,﹣3),利用待定系数法可以确定抛物线的函数解析式;
(3)由于线段AB的长是4,利用三角形的面积公式可以求出P的纵坐标的绝对值,然后代入(1)中直线解析式即可确定P的坐标.
【解答】解:(1)∵直线经过点:C(1,﹣2)、D(2,﹣3),
设解析式为y=kx+b,
∴,
解之得:k=﹣1,b=﹣1,
∴这些的解析式为y=﹣x﹣1;
(2)由抛物线的对称轴是:x=1,与x轴两交点A、B之间的距离是4,
可推出:A(﹣1,0),B(3,0)(2分)
设y=ax2+bx+c,
由待定系数法得:,
解之得:,
所以抛物线的解析式为:y=x2﹣2x﹣3(2分);
(3)设点P的坐标为(x,y),它到x轴的距离为|y|.(1分)
∴,
解之得:y=±6(1分)
由点P在直线y=﹣x﹣1上,得P点坐标为(﹣7,6)和(5,﹣6).
【点评】此题分别考查了抛物线与x轴的交点坐标与对称轴的关系、待定系数法确定函数的解析式即三角形的面积公式等知识,有一定的综合性,一起学生熟练掌握各个知识点才能很好解决问题.
21.(8分)某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).
(1)写出y与x的函数关系式 y=300+20x ;
(2)求出W与x的函数关系式(不必写出x的取值范围)
【分析】(1)利用每天可卖出300个,每降价1元,每天可多卖出20个,进而得出y与x的函数关系式;
(2)利用销量×每千克商品的利润=总利润,进而得出答案.
【解答】解:(1)设每个降价x(元),每天销售y(个),
y与x的函数关系式为:y=300+20x;
故答案为:y=300+20x;
(2)由题意可得,W与x的函数关系式为:
W=(300+20x)(60﹣40﹣x)
=﹣20x2+100x+6000.
【点评】此题主要考查了根据实际问题列二次函数关系式,正确掌握销量与每千克利润与总利润的关系是解题关键.
22.(10分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)
【分析】(1)根据点在抛物线上易求得c;
(2)根据解析式求出A,B,C三点坐标,求出地毯的总长度,再根据地毯的价格求出购买地毯需要的钱;
(3)由已知矩形EFGH的周长,求出GF,EF边的长度,再根据三角函数性质求出倾斜角∠GEF的度数.
【解答】解:(1)抛物线的解析式为y=﹣+c,
∵点(0,5)在抛物线上
∴c=5;
(2)由(1)知,OC=5,
令y=0,即﹣+5=0,解得x1=10,x2=﹣10;
∴地毯的总长度为:AB+2OC=20+2×5=30,
∴30×1.5×20=900
答:购买地毯需要900元.
(3)可设G的坐标为(m,﹣+5)其中m>0
则EF=2m,GF=﹣+5,
由已知得:2(EF+GF)=27.5,
即2(2m﹣+5)=27.5,
解得:m1=5,m2=35(不合题意,舍去),
把m1=5代入,﹣+5=﹣×52+5=3.75,
∴点G的坐标是(5,3.75),
∴EF=10,GF=3.75,
在Rt△EFG中,tan∠GEF===0.375,
∴∠GEF≈20.6°.
【点评】此题考查二次函数和三角函数的性质及其应用,要结合图形做题.
23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣1,0),点C(0,2)
(1)求抛物线的函数解析式;
(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.
【分析】(1)把A与C坐标代入抛物线解析式求出b与c的值,确定出解析式即可;
(2)连接OD,设出D坐标,四边形OCDB的面积等于三角形OCD面积+三角形OBD面积,表示出三角形BCD面积S与m的二次函数解析式,求出最大面积及D坐标即可.
【解答】解:(1)将A,C代入得:,
解得:,
则抛物线的函数解析式为y=﹣x2+x+2;
(2)连接OD,则有B(4,0),设D(m,﹣m2+m+2),
∵S四边形OCDB﹣S△OCD﹣S△OBD=×2m+×4(﹣m2+m+2)=﹣m2+4m+4,
∴S△BCD=S四边形OCDB﹣S△OBC=﹣m2+4m+4﹣×4×2=﹣m2+4m=﹣(m﹣2)2+4,
当m=2时,S△BCD取得最大值4,
此时yD=﹣×4+×2+2=3,即D(2,3).
【点评】此题考查了抛物线与x轴的交点,以及待定系数法求二次函数解析式,熟练掌握二次函数的性质是解本题的关键.
24.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.
【分析】
(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;
(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;
(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可.
【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),
∴m=﹣1,
∴直线l的解析式为y=x﹣1,
∵直线l:y=x﹣1经过点C(4,n),
∴n=×4﹣1=2,
∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),
∴,
解得,
∴抛物线的解析式为y=x2﹣x﹣1;
(2)令y=0,则x﹣1=0,
解得x=,
∴点A的坐标为(,0),
∴OA=,
在Rt△OAB中,OB=1,
∴AB===,
∵DE∥y轴,
∴∠ABO=∠DEF,
在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,
DF=DE•sin∠DEF=DE•=DE,
∴p=2(DF+EF)=2(+)DE=DE,
∵点D的横坐标为t(0<t<4),
∴D(t, t2﹣t﹣1),E(t, t﹣1),
∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,
∴p=×(﹣t2+2t)=﹣t2+t,
∵p=﹣(t﹣2)2+,且﹣<0,
∴当t=2时,p有最大值;
(3)∵△AOB绕点M沿逆时针方向旋转90°,
∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,
①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,
∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,
解得x=,
②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1
的纵坐标大,
∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,
解得x=﹣,
综上所述,点A1的横坐标为或﹣.
【点评】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,注意要分情况讨论.